Nitrogen Dynamics from Conventional Organic Manures as Influenced by Different Temperature Regimes in Subtropical Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling for Incubation Study
2.2. Collection and Processing of Compost
2.3. Incubation Experiment
2.4. Modeling of N Mineralisation
2.5. Statistical Analysis
3. Results
3.1. Effect of Temperatures on N-Release Pattern from Organic Manures
3.1.1. Poultry Manure
3.1.2. Vermicompost
3.1.3. Bio-Slurry
3.1.4. Cowdung
3.1.5. Water Hyacinth Compost
3.1.6. Rice Straw Compost
3.2. Prediction of N Mineralisation Using First-Order Kinetic Model
3.3. Easily Mineralisable N Pool (CAf)
3.4. Nitrogen Mineralisation Rate Constant for Easily Mineralisable N Pool (Kf)
4. Discussion
4.1. Effect of Temperature Regimes and Different Organic Manures on N-Release Patterns
4.2. Predicting N Mineralisation Using First-Order Kinetic Models
4.2.1. CAf
4.2.2. Kf
4.2.3. Model Fitness
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biswas, J.C.; Kalra, N.; Maniruzzaman, M.; Haque, M.M.; Naher, U.A.; Ali, M.H.; Rahnamayan, S. Soil fertility levels in Bangladesh for rice cultivation. Asian J. Soil. Sci. Plant Nutr. 2019, 4, 1–11. [Google Scholar] [CrossRef]
- Hasan, M.N.; Bari, M.A.; Lutfar, M.R. Soil Fertility Trends in Bangladesh 2010 to 2020; SRSRF project; Soil Resource Development Institute, Ministry of Agriculture: Dhaka, Bangladesh, 2020; pp. 1–84.
- BARC. Fertilizer Recommendation Guide; Bangladesh Agricultural Research Council (BARC): Dhaka, Bangladesh, 2018.
- Alam, M.K.; Islam, M.M.; Salahin, N.; Hasanuzzaman, M. Effect of tillage practices on soil properties and crop productivity in wheat-mungbean-rice cropping system under subtropical climatic conditions. Sci. World J. 2014, 10, 40–55. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.K.; Bell, R.W.; Haque, M.E.; Kader, M.A. Minimal soil disturbance and increased residue retention increase soil carbon in rice-based cropping systems on the Eastern Gangetic Plain. Soil Tillage Res. 2018, 183, 28–41. [Google Scholar] [CrossRef]
- Alam, M.K.; Bell, R.W.; Haque, M.E.; Islam, M.A.; Kader, M.A. Soil nitrogen storage and availability to crops are increased by conservation agriculture practices in rice–based cropping systems in the Eastern Gangetic Plains. Field Crops Res. 2020, 250, 107764. [Google Scholar] [CrossRef]
- Shil, N.; Saleque, M.; Islam, J.M. Soil fertility status of some of the intensive crop growing areas under major agroecological zones of Bangladesh. Bangladesh J. Agric. Res. 2016, 41, 735–757. [Google Scholar] [CrossRef]
- Kumar, U.; Mukta, M.; Mia, M. Changes in soil properties of four agro-ecological zones of Tangail district in Bangladesh. Progress. Agric. 2019, 29, 284–294. [Google Scholar] [CrossRef]
- Uddin, M.; Hooda, P.S.; Mohiuddin, A.; Haque, M.E.; Smith, M.; Waller, M.; Biswas, J.K. Soil organic carbon dynamics in the agricultural soils of Bangladesh following more than 20 years of land use intensification. J. Environ. Manag. 2022, 305, 114427. [Google Scholar] [CrossRef]
- Barma, S.C.; Hossain, A.K.M.M.; Sharmma, M.C.D.; Pramanik, S.K. Effect of boron and poultry manure on soil fertility and yield performance of wheat (BARI gom 25). J. Agric. Rural Res. 2019, 3, 69–77. [Google Scholar]
- Blanco-Canqui, H.; Lal, R. Impacts of long-term wheat straw management on soil hydraulic properties under no-tillage. Soil Sci. Soc. Am. J. 2007, 71, 1166–1173. [Google Scholar]
- Gunnarsson, C.C.; Petersen, C.M. Water hyacinths as a resource in agriculture and energy production: A literature review. Waste Manag. 2007, 27, 117–129. [Google Scholar]
- Kebede, T.; Keneni, Y.G.; Senbeta, A.F.; Sime, G. Effect of bioslurry and chemical fertilizer on the agronomic performances of maize. Heliyon 2023, 9, e13000. [Google Scholar] [CrossRef] [PubMed]
- Raza, S.T.; Zhu, B.; Yao, Z.; Wu, J.; Chen, Z.; Ali, Z.; Tang, J.L. Impacts of vermicompost application on crop yield, ammonia volatilization and greenhouse gases emission on upland in Southwest China. Sci. Total Environ. 2023, 860, 160479. [Google Scholar] [CrossRef] [PubMed]
- Nan, X.U.; Bhadha, J.H.; Rabbany, A.; Swanson, S.; Mccray, J.M.; Li, Y.; Strauss, S.L.; Mylavarapu, R. Sugarcane bagasse amendment mitigates nutrient leaching from a mineral soil under tropical conditions. Pedosphere 2022, 32, 876–883. [Google Scholar]
- Saha, P.K.; Ishaque, M.; Saleque, M.A.; Miah, M.A.M.; Panaullah, G.M.; Bhuiyan, N.I. Long-term integrated nutrient management for rice-based cropping pattern: Effect on growth, yield, nutrient uptake, nutrient balance sheet and soil fertility. Commun. Soil. Sci. Plant Anal. 2007, 38, 579–610. [Google Scholar] [CrossRef]
- Bitzer, C.C.; Sims, J.T. Estimating the availability of nitrogen in poultry manure through laboratory and field studies. J. Environ. Qual. 2000, 17, 47–54. [Google Scholar] [CrossRef]
- Ewulo, B.S. Effect of poultry and cattle manure on sandy clay loam soil. J. Animal Vet. Sci. 2005, 4, 839–841. [Google Scholar]
- Sharma, K.C.; Arya, P.S. Effect of nitrogen and farmyard manure on cabbage (Brassica oleraceae var. Capitata) in dry zone of Himachal Pradesh. Indian. J. Agric. Sci. 2001, 71, 60–61. [Google Scholar]
- Walpola, B.C.; Wanniarachchi, S.D. Microbial respiration and nitrogen mineralization in soil amended with different proportions of vermicompost and coir dust. Bangladesh J. Agric. Res. 2009, 34, 537–543. [Google Scholar]
- Nadelhoffer, K.J.; Giblin, A.E.; Shaver, G.R.; Laundre, J.A. Effects of temperature and substrate quality on element mineralization in six arctic soils. Ecology 1991, 72, 242–253. [Google Scholar] [CrossRef]
- Aber, J.D.; Melillo, J.M. Terrestrial Ecosystems; Saunders College Publishing: Philadelphia, PA, USA, 1991. [Google Scholar]
- Kirchmann, H.; Lundval, A. Relationship between N immobilization and volatile fatty acids in soil after application of pig and cattle slurry. Biol. Fertil. Soils 1993, 15, 161–164. [Google Scholar] [CrossRef]
- Chen, B.; Liu, E.; Tian, Q.; Yan, C.; Zhang, Y. Soil nitrogen dynamics and crop residues, a review. Agron. Sustain. Dev. 2014, 34, 429–442. [Google Scholar] [CrossRef]
- Kumar, K.; Goh, K.M. Nitrogen release from crop residues and organic amendments as affected by biochemical composition. Commun. Soil Sci. Plant. Anal. 2003, 34, 2441–2460. [Google Scholar] [CrossRef]
- Mohanty, M.; Reddy, S.K.; Probert, M.E.; Dalal, R.C.; Rao, S.A.; Menzies, N.W. Modelling N mineralization from green manure and farmyard manure from a laboratory incubation study. Ecol. Model. 2001, 222, 719–726. [Google Scholar] [CrossRef]
- Mondol, A.T.M.A.I.; Harun-or-Rashid, M.; Alam, M.K.; Chowdhury, M.A.H.; Ahmed, S. Unveiling the nature of carbon decomposition on different organic manuresources: The impact of temperature regimes in a subtropical climate. J. Appl. Life Sci. Environ. 2023, 56, 641–658. [Google Scholar] [CrossRef]
- Page, A.L.; Miller, R.H.; Keeney, D.R. (Eds.) Methods of Soil Analysis, 2nd ed.; American Society of Agronomy, Inc.: Madison, WI, USA, 1982. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total Carbon, organic carbon and organic matter. In Methods of Soil Analysis, 2nd ed.; Page, A.L., Miller , R.H., Keeney, D.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; Volume 8, pp. 539–580. [Google Scholar]
- Bremner, J.M.; Mulvaney, C.S. Total nitrogen, In Methods of Soil Analysis, 2nd ed.; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; Volume 8, pp. 599–622. [Google Scholar]
- Tan, K.H. Soil Sampling, Preparation and Analysis: Determination of Soil Nitrogen; Marcel Dekker Incorporation: New York, NY, USA, 1995; pp. 148–153. [Google Scholar]
- Imamul, H.S.M.; Alam, M.D. (Eds.) A Handbook on Analyses of Soil, Plant and Water; Bangladesh-Australia Centre for Environmental Research, University of Dhaka: Dhaka, Bangladesh, 2005; pp. 97–100. [Google Scholar]
- Watanabe, F.S.; Olsen, S.R. Test of an ascorbic and method for determining phosphorus in water and NaHCO3, extracts from soil. Soil. Sci. Soc. Am. Proc. 1965, 29, 677–678. [Google Scholar] [CrossRef]
- John, M.K. Colorimetric determination of phosphorus in soil and plant materials with ascorbic acid. Soil Sci. 1970, 109, 214–220. [Google Scholar] [CrossRef]
- Coleman, N.T.; Weed, S.B.; Macracken, R.J. Cation exchange capacity and exchangeable cationsin piedmont soils of north Caroline. Proc. Soil. Sci. Soc. Am. 1959, 23, 146–149. [Google Scholar] [CrossRef]
- Knudsen, D.; Petterson, G.A.; Pratt, P.F. Lithium, Sodium and Potassium. In Methods of Soil Analysis, 2nd ed.; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; Volume 8, pp. 643–693. [Google Scholar]
- Fox, R.L.; Olsen, R.A.; Rhoades, H.F. Evaluating the sulphur status of soils by plant and soil tests. Soil. Sci. Soc. Am. Proc. 1964, 28, 243–246. [Google Scholar] [CrossRef]
- Keren Boron, R. Methods of Soil Analysis; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, H.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1996; Volume 8, pp. 603–623. [Google Scholar]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA soil test for Zn, Fe, Mn and Cu. Soil. Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- De Neve, S.; Pannier, J.; Hofman, G. Temperature effects on C- and N-mineralization from vegetable crop residues. Plant Soil 1996, 181, 25–30. [Google Scholar] [CrossRef]
- Saviozzi, A.; Cardelli, R.; Cipolli, S.; Levi-Minzi, R.; Riffaldi, R. Sulphur mineralization kinetics of cattle manure and green waste compost in soils. Waste Manag. Res. 1997, 24, 545–551. [Google Scholar] [CrossRef]
- Tian, G.; Kang, B.T.; Brussaard, L. Biological effects of plant residues with contrasting chemical compositions under humid tropical conditions–decomposition and nutrient release. Soil Biol. Biochem. 1992, 24, 1051–1060. [Google Scholar] [CrossRef]
- Cong, J.; Liu, X.; Lu, H.; Xu, H.; Li, Y.; Deng, Y.; Li, D.; Zhang, Y. Available nitrogen is the key factor influencing soil microbial functional gene diversity in tropical rainforest. BMC Microbiol. 2015, 15, 167. [Google Scholar] [CrossRef]
- Mukharjee, D.; Ghosh, S.K.; Das, A.C. A study on the chemical and microbiological changes during decomposition of straw in soil. Indian Agric. 1990, 34, 1–10. [Google Scholar]
- Saha, N.; Das, A.C.; Mukharjee, D. The effect of decomposition of organic matter on the activities of microorganisms and availability of N., P and S in soil. J. Indian Soc. Soil. Sci. 1995, 43, 210–215. [Google Scholar]
- Wang, F.; Chen, S.; Wang, Y.; Zhang, Y.; Hu, C.; Liu, B. Long-Term Nitrogen Fertilization Elevates the Activity and Abundance of Nitrifying and Denitrifying Microbial Communities in an Upland Soil: Implications for Nitrogen Loss from Intensive Agricultural Systems. Front. Microbiol. 2018, 9, 2424. [Google Scholar]
- Kirkby, R.; Friedl, J.; De Rosa, D.; Clough, J.T.; Rowlings, W.D.; Grace, R.P. Hybrid pathways of denitrification drive N2O but not N2 emissions from an acid-sulphate sugarcane soil. Biol. Fertil. Soils 2024. [Google Scholar] [CrossRef]
- Rummel, P.S.; Well, R.; Pausch, J.; Pfeiffer, B.; Dittert, K. Carbon Availability and Nitrogen Mineralization Control Denitrification Rates and Product Stoichiometry during Initial Maize Litter Decomposition. Appl. Sci. 2021, 11, 5309. [Google Scholar] [CrossRef]
- Smith, J.H.; Douglas, C.L. Influence of silica and nitrogen contents and straw application rate on decomposition of Gaines’ wheat straw in soil. Soil Sci. 1970, 109, 341–344. [Google Scholar]
- Asagi, N.; Ueno, H. Nitrogen dynamics in paddy soil applied with various 15N-labelled green manures. Plant Soil 2009, 322, 251–262. [Google Scholar] [CrossRef]
- Hlaing, T.; Moe, K.; Kyaw, H.E.; Ngwe, K.; Hlaing, M.M.; Oo, H.H. Assessment of Green Manure Crops and Their Impacts on Mineralizable Nitrogen and Changes of Nutrient Contents in the Soil. Asian Soil Res. J. 2004, 8, 29–38. [Google Scholar] [CrossRef]
- Ishikawa, M. Green manure in rice: The Japanese experience. In Sustainable Agriculture: Green manure in Rice Farming In Proceeding of the Symposium. Role of Green Manure Crops in Rice Farming System; International Rice Research Institute: Los Baños, Philippines, 1988; pp. 45–61. [Google Scholar]
- Robertson, G.P.; Groffman, P.M. Nitrogen transformations. In Soil Microbiology, Biochemistry and Ecology; Paul, E.A., Ed.; Springer: New York, NY, USA, 2007; pp. 341–364. [Google Scholar]
- Black, C.A. Agronomy Monograph. In Methods of Soil Analysis; Part I, 9; American Society of Agronomy: Madison, WI, USA, 1965. [Google Scholar]
- Bengtsson, G.; Bengtson, P.; Månsson, K.F. Gross nitrogen mineralization-, immobilization-, and nitrification rates as a function of soil C/N ratio and microbial activity. Soil Biol. Biochem. 2003, 35, 143–154. [Google Scholar] [CrossRef]
- Frankenberger, W.T.; Abdelmajid, H.M. Kinetic parameters of nitrogen mineralization rates of leguminous crops incorporated into soil. Plant Soil 1984, 87, 257–271. [Google Scholar] [CrossRef]
- Pathak, H.M.C.; Sarkar, M.C. N supplying capacity of organic manures with urea and their combinations. J. Indian Soc. Soil Sci. 1994, 42, 261–267. [Google Scholar]
- Wagger, M.G. Time of desiccation effects on plant on plant composition and subsequent nitrogen release from several winter annual cover crops. Agron. J. 1989, 81, 236–241. [Google Scholar] [CrossRef]
- Mishra, B.; Sharma, P.K.; Bronson, K.F. Kinetics of wheat straw decomposition and N mineralization in rice field. J. Indian Soc. Soil Sci. 2001, 49, 249–254. [Google Scholar]
- Dessureault-Rompré, J.; Zebarth, B.J.; Georgallas, A.; Burton, D.L.; Grant, C.A.; Drury, C.F. Temperature dependence of soil nitrogen mineralization rate: Comparison of mathematical models, reference temperatures and origin of the soils. Geoderma 2010, 157, 97–108. [Google Scholar] [CrossRef]
- Parton, W.J.; Schimel, D.S.; Cole, C.V.; Ojima, D.S. Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci. Soc. Am. J. 1988, 51, 1173–1179. [Google Scholar] [CrossRef]
- Stanford, G.; Frere, M.H.; Schwaninger, D.H. Temperature coefficient of soil nitrogen mineralization. Soil Sci. 1973, 115, 321–323. [Google Scholar] [CrossRef]
- Eghball, B.; Ginting, D.; Gilley, J.E. Residual effects of manure and compost applications on corn production and soil properties. Agron. J. 2004, 96, 442–447. [Google Scholar] [CrossRef]
- Chadwick, D.R.; John, F.; Pain, B.F.; Chambers, B.J.; Williams, J.C. Plant uptake of nitrogen from the organic nitrogen fraction of animal manures: A laboratory experiment. J. Agric. Sci. Camb. 2000, 134, 159–168. [Google Scholar] [CrossRef]
- Indraratne, S.P.; Hao, X.; Chang, C.; Godlinski, F. Rate of soil recovery following termination of long-term cattle manure applications. Geoderma 2009, 150, 415–423. [Google Scholar] [CrossRef]
- Stanford G, Smith SJ Nitrogen mineralization potentials of soils. Soil Sci. Soc. Am. J. 1972, 36, 465–472. [CrossRef]
- Alvarez, R.; Alvarez, C.R. Soil organic matter pools and their associations with carbon mineralization kinetics. Soil Sci. Soc. Am. J. 2000, 64, 184–189. [Google Scholar] [CrossRef]
- Azeez, J.O. Averbeke WV Nitrogen mineralization potential of three animal manures applied on a sandy clay loam soil. Bioresour. Technol. 2010, 101, 5645–5651. [Google Scholar] [CrossRef]
- Moharana, P.C.; Biswas, D.R. Use of mineralization kinetics to estimate the potentially mineralizable nitrogen of rock phosphate-enriched composts-amended soil. J. Plant Nutr. 2018, 41, 1333–1344. [Google Scholar] [CrossRef]
- Bernal, M.P.; Sanchez-Monedero, M.A.; Paredes, C.; Roig, A. Carbon mineralization from organic wastes at different composting stages during their incubation with soil. Agric. Ecosyst. Environ. 1998, 69, 175–189. [Google Scholar] [CrossRef]
- Trinsoutrot, I.; Recous, S.; Bentz, B.; Lineres, M.; Cheneby, D.; Nicolardot, B. Biochemical quality of crop residues and carbon and nitrogen mineralization kinetics under nonlimiting nitrogen conditions. Soil. Sci. Soc. Am. J. 2000, 64, 918–926. [Google Scholar] [CrossRef]
- Robertson, G.P.; Groffman, P.M. Nitrogen transformations. In Soil Microbiology, Ecology and Biochemistry, 4th ed.; Paul, E.A., Ed.; Academic Press: Burlington, MA, USA, 2015; pp. 421–446. [Google Scholar]
- Curtin, D.; Campbell, C.A. Mineralizable nitrogen. In Soil Sampling and Methods of Analysis, 2nd ed.; Carter, M.R., Gregorich, E.G., Eds.; CRC Press: Boca Raton, FL, USA, 2008; pp. 599–606. [Google Scholar]
Morphological Characteristics | |
---|---|
Locality | BARI, Joydebpur, Gazipur |
Geographic position Altitude | 23°24′13″ N Latitude, 90°24′22″ E Longitude, 14.6 m high above the sea level |
Agro-Ecological Zone (AEZ) | Modhupur Tract (AEZ 28) |
General Soil type | Grey Terrace Soils (Aeric Albaquept) |
Taxonomic soil classification | |
Order | Inceptisol |
Suborder | Aquept |
Subgroup | Aeric Albaquept |
Soil series | Chhiata |
Physiographic unit | Madhupur Tract |
Drainage | Moderate |
Flood level | Above flood level |
Topography | Medium high land |
Physical Properties | Values |
---|---|
Sand (%) | 27.18 |
Silt (%) | 38.30 |
Clay (%) | 34.52 |
Textural class | Clay loam |
Particle density (g cm−3) | 2.48 |
Bulk density (g cm−3) | 1.42 |
Porosity (%) | 42.74 |
Chemical properties | |
pH | 6.5 |
Organic C (%) | 0.85 |
Organic matter (%) | 1.47 |
Exchangeable K (cmol kg−1 soil) | 0.18 |
Exchangeable Ca (cmol kg−1 soil) | 4.80 |
Exchangeable Mg (cmol kg−1 soil) | 2.10 |
Total N (%) | 0.07 |
Available N (µg g−1 soil) | 50.00 |
Available P (µg g−1 soil) | 12.93 |
Available S (µg g−1 soil) | 15.00 |
Available Zn (µg g−1 soil) | 0.71 |
Available B (µg g−1 soil) | 0.26 |
Manures | C | N | P | K | S | C:N | C:P | C:S |
---|---|---|---|---|---|---|---|---|
(%) | ||||||||
PM | 25 | 2.32 | 2.18 | 1.45 | 0.44 | 10.8 | 11.5 | 56.8 |
VC | 28 | 1.90 | 1.70 | 1.40 | 0.38 | 14.7 | 16.5 | 73.7 |
BS | 29 | 1.48 | 1.25 | 1.24 | 0.31 | 20.0 | 23.2 | 93.5 |
CD | 34 | 1.32 | 0.29 | 0.75 | 0.27 | 25.8 | 117 | 126 |
WHC | 40 | 0.80 | 0.13 | 0.80 | 0.05 | 50.0 | 308 | 800 |
RSC | 42 | 0.60 | 0.07 | 0.85 | 0.05 | 70.0 | 600 | 840 |
Manures | Ca | Mg | Na | Cu | Fe | Zn | Mn | B |
(%) | (µg g−1) | |||||||
PM | 1.59 | 1.02 | 0.58 | 220 | 680 | 266 | 300 | 105 |
VC | 1.10 | 0.55 | 0.36 | 105 | 651 | 115 | 325 | 113 |
BS | 1.36 | 0.45 | 0.30 | 155 | 701 | 216 | 310 | 154 |
CD | 1.05 | 0.47 | 0.26 | 96 | 690 | 132 | 252 | 142 |
WHC | 1.00 | 0.39 | 0.23 | 90 | 812 | 38.6 | 305 | 170 |
RSC | 0.81 | 0.29 | 0.15 | 45 | 317 | 30.9 | 234 | 23.0 |
Name of Parameter | Methods |
---|---|
1. pH | Glass-electrode pH meter, the soil–water ratio is 1:2.5, as described by Page et al. [28]. |
2. Organic carbon | Wet digestion method [29]. |
3. Total N | Micro-Kjeldahl method [30]. |
4. Available N (NH4+ and NO3−) | The ammonium form of N was determined by leaching the soil with 1 N KCl. The NO3-N was determined by reducing the nitrate to ammonia by Devarda’s alloy in an alkaline solution (40% NaOH) [31,32]. |
5. Available P | Available phosphorus in the soil samples was extracted with 0.5 M NaHCO3 solution at a nearly constant pH of 8.5 following the method described by [33] Watanabe and Olsen (1965). A spectrophotometer was used to measure the intensity of the color developed by the ascorbic acid method, as outlined by [34]. |
6. Exchangeable K, Ca and Mg | Ammonium acetate extraction method [35]. Extracted by repeated shaking and centrifugation of the soil with a neutral 1 M NH4OAc solution followed by decantation. The K concentrations in the extract by Knudsen et al. [36]. Ca and Mg concentration by Page et al. [28]. |
7. Available S | Extracted using 0.15% CaCl2 solution and determined turbidimetrically using BaCl2 crystals [37]. |
8. Available B | Calcium chloride extraction method [28]. Extracted using hot water–0.02 M CaCl2 solution (1:2) and determined by spectrophotometer following azomethine-H method [38]. |
9. Available Zn | DTPA extraction method [39]. |
Treatments | CAf (%) | Kf (%) | R2 |
---|---|---|---|
PM × 15 °C | 33.3 (0.60) | 0.044 (0.002) | 0.930 |
PM × 25 °C | 36.9 (0.53) | 0.061 (0.001) | 0.935 |
PM × 35 °C | 39.3 (0.58) | 0.089 (0.000) | 0.905 |
VC × 15 °C | 27.3 (0.11) | 0.064 (0.001) | 0.875 |
VC × 25 °C | 32.1 (0.41) | 0.071 (0.001) | 0.825 |
VC × 35 °C | 34.3 (0.39) | 0.089 (0.000) | 0.820 |
BS × 15 °C | 27.2 (0.42) | 0.057 (0.001) | 0.945 |
BS × 25 °C | 28.7 (0.26) | 0.088 (0.001) | 0.885 |
BS × 35 °C | 31.0 (0.25) | 0.097 (0.001) | 0.845 |
CD × 15 °C | 22.1 (0.21) | 0.058 (0.001) | 0.945 |
CD × 25 °C | 23.5 (0.15) | 0.086 (0.002) | 0.915 |
CD × 35 °C | 26.4 (0.28) | 0.100 (0.003) | 0.870 |
WHC × 15 °C | 12.5 (0.87) | 0.050 (0.002) | 0.860 |
WHC × 25 °C | 16.5 (0.27) | 0.060 (0.004) | 0.855 |
WHC × 35 °C | 19.1 (0.54) | 0.080 (0.001) | 0.870 |
RSC × 15 °C | 10.4 (0.35) | 0.060 (0.001) | 0.945 |
RSC × 25 °C | 15.6 (0.23) | 0.080 (0.002) | 0.910 |
RSC × 35 °C | 19.9 (0.63) | 0.090 (0.002) | 0.885 |
SE (±) | 1.19 | 0.003 | 0.02 |
Significance | ** | ** | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mondol, A.T.M.A.I.; Chowdhury, M.A.H.; Ahmed, S.; Alam, M.K. Nitrogen Dynamics from Conventional Organic Manures as Influenced by Different Temperature Regimes in Subtropical Conditions. Nitrogen 2024, 5, 746-762. https://doi.org/10.3390/nitrogen5030049
Mondol ATMAI, Chowdhury MAH, Ahmed S, Alam MK. Nitrogen Dynamics from Conventional Organic Manures as Influenced by Different Temperature Regimes in Subtropical Conditions. Nitrogen. 2024; 5(3):746-762. https://doi.org/10.3390/nitrogen5030049
Chicago/Turabian StyleMondol, Abu Taher Mohammad Anwarul Islam, Md. Akhter Hossain Chowdhury, Sharif Ahmed, and Md Khairul Alam. 2024. "Nitrogen Dynamics from Conventional Organic Manures as Influenced by Different Temperature Regimes in Subtropical Conditions" Nitrogen 5, no. 3: 746-762. https://doi.org/10.3390/nitrogen5030049
APA StyleMondol, A. T. M. A. I., Chowdhury, M. A. H., Ahmed, S., & Alam, M. K. (2024). Nitrogen Dynamics from Conventional Organic Manures as Influenced by Different Temperature Regimes in Subtropical Conditions. Nitrogen, 5(3), 746-762. https://doi.org/10.3390/nitrogen5030049