Site-Specific Nitrogen Fertilizer Management Using Canopy Reflectance Sensors, Chlorophyll Meters and Leaf Color Charts: A Review
Abstract
:1. Introduction
2. Site-Specific N Management
3. Canopy Reflectance Sensors
3.1. Canopy Reflectance Sensor-Based N Fertilizer Management in Rice
3.2. Canopy Reflectance Sensor-Based N Fertilizer Management in Wheat
3.3. Canopy Reflectance Sensor-Based N Fertilizer Management in Maize
3.4. Comparative Analysis of Canopy Reflectance Sensors in N Fertilizer Management
4. Chlorophyll Meters
4.1. Application of Chlorophyll Meters for N Management
4.1.1. Critical Threshold Value Approach
4.1.2. Dynamic Sufficiency Index Approach
4.2. Comparative Analysis of Fixed Threshold vs. Sufficiency Index Methods for N Fertilizer Management with Chlorophyll Meters
5. Leaf Color Charts for N Fertilizer Management
5.1. Real-Time N Management Using LCC
5.2. Fixed-Time Adjustable Dose N Management with LCC
5.3. Dynamic Threshold Greenness Approach for N Management Using LCC
5.4. Comparative Evaluation of N Fertilizer Management Approaches Using LCC
6. Comparative Analysis of SSNM Tools
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Frink, C.R.; Waggoner, E.; Ausubel, J.H. Nitrogen fertilizer: Retrospect and prospect. Proc. Natl. Acad. Sci. USA 1999, 96, 1175–1180. [Google Scholar] [CrossRef] [PubMed]
- Statista. 2024. Available online: https://www.statista.com (accessed on 26 July 2024).
- Omara, P.; Aula, L.; Oyebiyi, F.; Raun, W.R. World cereal nitrogen use efficiency trends: Review and current knowledge. Agrosystems Geosci. Environ. 2019, 2, 1–8. [Google Scholar] [CrossRef]
- Wang, Z.H.; Li, S.X. Nitrate N loss by leaching and surface runoff in agricultural land: A global issue (a review). Adv. Agron. 2019, 156, 159–217. [Google Scholar]
- Shukla, S.; Saxena, A. Sources and leaching of nitrate contamination in groundwater. Curr. Sci. 2020, 118, 883–891. [Google Scholar] [CrossRef]
- Bijay-Singh; Craswell, E. Fertilizers and nitrate pollution of surface and ground water: An increasingly pervasive global problem. SN Appl. Sci. 2021, 3, 518. [Google Scholar] [CrossRef]
- Kahrl, F.; Li, Y.; Su, Y.; Tennigkeit, T.; Wilkes, A.; Xu, J. Greenhouse gas emissions from nitrogen fertilizer use in China. Environ. Sci. Policy 2010, 13, 688–694. [Google Scholar] [CrossRef]
- Guo, C.; Liu, X.; He, X. A global meta-analysis of crop yield and agricultural greenhouse gas emissions under nitrogen fertilizer application. Sci. Total Environ. 2022, 831, 154982. [Google Scholar] [CrossRef]
- Menegat, S.; Ledo, A.; Tirado, R. Greenhouse gas emissions from global production and use of nitrogen synthetic fertilisers in agriculture. Sci. Rep. 2022, 12, 14490. [Google Scholar]
- Elser, J.J.; Elser, T.J.; Carpenter, S.R.; Brock, W.A. Regime shift in fertilizer commodities indicates more turbulence ahead for food security. PLoS ONE 2014, 9, e93998. [Google Scholar] [CrossRef]
- Schnitkey, G.; Paulson, N.; Zulauf, C.; Swanson, K.; Colussi, J.; Baltz, J. Nitrogen fertilizer prices and supply in light of the Ukraine-Russia conflict. Farmdoc Dly. 2022, 12, 45. Available online: https://farmdocdaily.illinois.edu/2022/04/nitrogen-fertilizer-prices-and-supply-in-light-of-the-ukraine-russia-conflict.html (accessed on 13 August 2024).
- Hebebrand, C.; Laborde Debucquet, D. High fertilizer prices contribute to rising global food security concerns. In The Russia-Ukraine Conflict and Global Food Security; Glauber, J., Debucquet, D.L., Eds.; Section One: A Conflict with Global Consequences; International Food Policy Research Institute: Washington, DC, USA, 2023; Chapter 7; pp. 38–42. [Google Scholar]
- Ali, A.M.; Thind, H.S.; Sharma, S.; Singh, Y. Site-specific nitrogen management in dry direct-seeded rice using chlorophyll meter and leaf colour chart. Pedosphere 2015, 25, 72–81. [Google Scholar] [CrossRef]
- Ali, A.M. Site-specific fertilizer nitrogen management in cereals in South Asia. Sustain. Agric. Rev. 2020, 39, 137–178. [Google Scholar]
- Mittermayer, M.; Gilg, A.; Maidl, F.X.; Nätscher, L.; Hülsbergen, K.J. Site-specific nitrogen balances based on spatially variable soil and plant properties. Precis. Agric. 2021, 22, 1416–1436. [Google Scholar] [CrossRef]
- Chivenge, P.; Zingore, S.; Ezui, K.S.; Njoroge, S.; Bunquin, M.A.; Dobermann, A.; Saito, K. Progress in research on site-specific nutrient management for smallholder farmers in sub-Saharan Africa. Field Crops Res. 2022, 281, 108503. [Google Scholar] [CrossRef] [PubMed]
- Delgado, J.A.; Khosla, R.; Bausch, W.C.; Westfall, D.G.; Inman, D.J. Nitrogen fertilizer management based on site-specific management zones reduces potential for nitrate leaching. J. Soil Water Conserv. 2005, 60, 402–410. [Google Scholar]
- Fagodiya, R.K.; Kumar, A.; Kumari, S.; Medhi, K.; Shabnam, A.A. Role of nitrogen and its agricultural management in changing environment. In Contaminants in Agriculture: Sources, Impacts and Management; Springer: Cham, Switzerland, 2020; pp. 247–270. [Google Scholar]
- Maaz, T.M.; Sapkota, T.B.; Eagle, A.J.; Kantar, M.B.; Bruulsema, T.W.; Majumdar, K. Meta-analysis of yield and nitrous oxide outcomes for nitrogen management in agriculture. Glob. Change Biol. 2021, 27, 2343–2360. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.M.; Ibrahim, S.M.; Bijay-Singh. Wheat grain yield and nitrogen uptake prediction using atLeaf and GreenSeeker portable optical sensors at jointing growth stage. Inf. Process. Agric. 2020, 7, 375–383. [Google Scholar] [CrossRef]
- Aula, L.; Omara, P.; Nambi, E.; Oyebiyi, F.B.; Raun, W.R. Review of active optical sensors for improving winter wheat nitrogen use efficiency. Agronomy 2020, 10, 1157. [Google Scholar] [CrossRef]
- Ali, A.M. Using hand-held chlorophyll meters and canopy reflectance sensors for fertilizer nitrogen management in cereals in small farms in developing countries. Sensors 2020, 20, 1127. [Google Scholar] [CrossRef]
- Zsebő, S.; Bede, L.; Kukorelli, G.; Kulmány, I.M.; Milics, G.; Stencinger, D.; Teschner, G.; Varga, Z.; Vona, V.; Kovács, A.J. Yield Prediction Using NDVI Values from GreenSeeker and MicaSense Cameras at Different Stages of Winter Wheat Phenology. Drones 2024, 8, 88. [Google Scholar] [CrossRef]
- Swiader, J.M.; Moore, A. SPAD-chlorophyll response to nitrogen fertilization and evaluation of nitrogen status in dryland and irrigated pumpkins. J. Plant Nutr. 2002, 25, 1089–1100. [Google Scholar] [CrossRef]
- Lin, F.F.; Deng, J.S.; Shi, Y.Y.; Chen, L.S.; Wang, K. Investigation of SPAD meter-based indices for estimating rice nitrogen status. Comput. Electron. Agric. 2010, 71, S60–S65. [Google Scholar] [CrossRef]
- Yuan, Z.; Ata-Ul-Karim, S.T.; Cao, Q.; Lu, Z.; Cao, W.; Zhu, Y.; Liu, X. Indicators for diagnosing nitrogen status of rice based on chlorophyll meter readings. Field Crops Res. 2016, 185, 12–20. [Google Scholar] [CrossRef]
- Ghosh, M.; Swain, D.K.; Jha, M.K.; Tewari, V.K. Chlorophyll meter-based nitrogen management in a rice–wheat cropping system in Eastern India. Int. J. Plant Prod. 2020, 14, 355–371. [Google Scholar] [CrossRef]
- Furuya, S. Growth diagnosis of rice plants by means of leaf color. Jpn. Agric. Res. Q. 1987, 20, 147–153. [Google Scholar]
- Yang, W.H.; Peng, S.; Huang, J.; Sanico, A.L.; Buresh, R.J.; Witt, C. Using leaf color charts to estimate leaf nitrogen status of rice. Agron. J. 2003, 95, 212–217. [Google Scholar] [CrossRef]
- Ali, A.M.; Ibrahim, S.M.; Hassany, W.M.; El-Sadek, A.N.; Bijay-Singh. Fixed-time corrective dose fertilizer nitrogen management in wheat using at Leaf meter and leaf colour chart. Exp. Agric. 2021, 57, 232–243. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, M.; Wang, N. Precision agriculture—A worldwide overview. Comput. Electron. Agric. 2002, 36, 113–132. [Google Scholar] [CrossRef]
- Shafi, U.; Mumtaz, R.; García-Nieto, J.; Hassan, S.A.; Zaidi, S.A.R.; Iqbal, N. Precision agriculture techniques and practices: From considerations to applications. Sensors 2019, 19, 3796. [Google Scholar] [CrossRef] [PubMed]
- Cisternas, I.; Velásquez, I.; Caro, A.; Rodríguez, A. Systematic literature review of implementations of precision agriculture. Comput. Electron. Agric. 2020, 176, 105626. [Google Scholar] [CrossRef]
- Karunathilake, E.M.B.M.; Le, A.T.; Heo, S.; Chung, Y.S.; Mansoor, S. The path to smart farming: Innovations and opportunities in precision agriculture. Agriculture 2023, 13, 1593. [Google Scholar] [CrossRef]
- Wang, X.; Miao, Y.; Dong, R.; Chen, Z.; Kusnierek, K.; Mi, G.; Mulla, D.J. Economic optimal nitrogen rate variability of maize in response to soil and weather conditions: Implications for site-specific nitrogen management. Agronomy 2020, 10, 1237. [Google Scholar] [CrossRef]
- Mencaroni, M.; Dal Ferro, N.; Furlanetto, J.; Longo, M.; Lazzaro, B.; Sartori, L.; Grant, B.B.; Smith, W.N.; Morari, F. Identifying N fertilizer management strategies to reduce ammonia volatilization: Towards a site-specific approach. J. Environ. Manag. 2021, 277, 111445. [Google Scholar] [CrossRef] [PubMed]
- Khanna, M.; Isik, M.; Winter-Nelson, A. Investment in site-specific crop management under uncertainty: Implications for nitrogen pollution control and environmental policy. Agric. Econ. 2000, 24, 9–12. [Google Scholar]
- Whetton, R.L.; Harty, M.A.; Holden, N.M. Communicating nitrogen loss mechanisms for improving nitrogen use efficiency management, focused on global wheat. Nitrogen 2022, 3, 213–246. [Google Scholar] [CrossRef]
- Snyder, C.S.; Bruulsema, T.W.; Jensen, T.L.; Fixen, E. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agric. Ecosyst. Environ. 2009, 133, 247–266. [Google Scholar] [CrossRef]
- Dreyfus, G.; Frederick, C.; Larkin, E.; Powers, Y.; Chatterjee, J.; Sharma, S. Reducing Nitrous Oxide Emissions from Smallholder Farmer Agriculture through Site Specific Nutrient Management. 2023. Available online: https://precisiondev.org/wp-content/uploads/2023/06/IGSDPxD-Reducing-nitrous-oxide-emissions-02-06-23.pdf (accessed on 14 August 2024).
- Chu, H.; Lin, X.; Fujii, T.; Morimoto, S.; Yagi, K.; Hu, J.; Zhang, J. Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil Biol. Biochem. 2007, 39, 2971–2976. [Google Scholar] [CrossRef]
- Du, Y.; Wang, T.; Wang, C.; Anane, S.; Liu, S.; Paz-Ferreiro, J. Nitrogen fertilizer is a key factor affecting the soil chemical and microbial communities in a Mollisol. Can. J. Microbiol. 2019, 65, 510–521. [Google Scholar] [CrossRef] [PubMed]
- Borase, D.N.; Murugeasn, S.; Nath, C.P.; Hazra, K.K.; Singh, S.S.; Kumar, N.; Singh, U.; Praharaj, C.S. Long-term impact of grain legumes and nutrient management practices on soil microbial activity and biochemical properties. Arch. Agron. Soil Sci. 2021, 67, 2015–2032. [Google Scholar] [CrossRef]
- Dincă, L.C.; Grenni, P.; Onet, C.; Onet, A. Fertilization and soil microbial community: A review. Appl. Sci. 2022, 12, 1198. [Google Scholar] [CrossRef]
- Van Grinsven, H.J.; Erisman, J.W.; De Vries, W.; Westhoek, H. Potential of extensification of European agriculture for a more sustainable food system, focusing on nitrogen. Environ. Res. Lett. 2015, 10, 025002. [Google Scholar] [CrossRef]
- Simonne, E.; Hochmuth, R. An overview of fertilization and irrigation management in the conventional and certified organic production of vegetable crops in Florida. Horticulturae 2016, 2, 7. [Google Scholar] [CrossRef]
- Singh, R.P.; Kumar, S.; Sainger, M.; Sainger, A.; Barnawal, D. Eco-friendly nitrogen fertilizers for sustainable agriculture. In Adaptive Soil Management: From Theory to Practices; Springer: Singapore, 2017; pp. 227–246. [Google Scholar]
- Reimer, A.P.; Denny, R.C.; Stuart, D. The impact of federal and state conservation programs on farmer nitrogen management. Environ. Manag. 2018, 62, 694–708. [Google Scholar] [CrossRef] [PubMed]
- Koch, B.; Khosla, R.; Frasier, W.M.; Westfall, D.G.; Inman, D. Economic feasibility of variable-rate nitrogen application utilizing site-specific management zones. Agron. J. 2004, 96, 1572–1580. [Google Scholar] [CrossRef]
- Pampolino, M.F.; Manguiat, I.J.; Ramanathan, S.; Gines, H.C.; Tan, S.; Chi, T.T.N.; Rajendran, R.; Buresh, R.J. Environmental impact and economic benefits of site-specific nutrient management (SSNM) in irrigated rice systems. Agric. Syst. 2007, 93, 1–24. [Google Scholar] [CrossRef]
- Karatay, Y.N.; Meyer-Aurich, A. Profitability and downside risk implications of site-specific nitrogen management with respect to wheat grain quality. Precis. Agric. 2020, 21, 449–472. [Google Scholar] [CrossRef]
- Doerge, T.A. Variable-rate nitrogen management creates opportunities and challenges for corn producers. Crop Manag. 2002, 1, 1–7. [Google Scholar] [CrossRef]
- Hussain, F.; Zia, M.S.; Akhtar, M.E.; Yasin, M. Nitrogen management and use efficiency with chlorophyll meter and leaf colour chart. Pak. J. Soil Sci. 2003, 22, 1–10. [Google Scholar]
- Bijay-Singh; Yadvinder-Singh; Ladha, J.K.; Bronson, K.F.; Balasubramanian, V.; Singh, J.; Khind, C.S. Chlorophyll meter–and leaf color chart–based nitrogen management for rice and wheat in Northwestern India. Agron. J. 2002, 94, 821–829. [Google Scholar] [CrossRef]
- Baral, B.R.; Pande, K.R.; Gaihre, Y.K.; Baral, K.R.; Sah, S.K.; Thapa, Y.B.; Singh, U. Real-time nitrogen management using decision support-tools increases nitrogen use efficiency of rice. Nutr. Cycl. Agroecosyst. 2021, 119, 355–368. [Google Scholar] [CrossRef]
- IRRI (International Rice Research Institute). Use of Leaf Color Chart (LCC) for N Management in Rice; Crop and Resource Management Network Technology Brief No. 1; IRRI: Los Baños, Philippines, 1996. [Google Scholar]
- Turner, F.T.; Jund, M.F. Chlorophyll meter to predict nitrogen topdress requirement for semidwarf rice. Agron. J. 1991, 83, 926–928. [Google Scholar] [CrossRef]
- Schepers, J.S.; Blackmer, T.M.; Francis, D.D. Predicting N fertilizer needs for corn in humid regions: Using chlorophyll meters. In Predicting N Fertilizer Needs for Corn in Humid Regions; Bock, B.R., Kelley, K.R., Eds.; National Fertilizer and Environmental Research Center: Muscle Shoals, AL, USA, 1992. [Google Scholar]
- Blackmer, T.M.; Schepers, J.S. Use of a chlorophyll meter to monitor nitrogen status and schedule fertigation for corn. J. Prod. Agric. 1995, 8, 56–60. [Google Scholar] [CrossRef]
- Stone, M.L.; Solie, J.B.; Raun, W.R.; Whitney, R.W.; Taylor, S.L.; Ringer, J.D. Use of spectral radiance for correcting in-season fertilizer nitrogen deficiencies in winter wheat. Trans. ASAE 1996, 39, 1623–1631. [Google Scholar] [CrossRef]
- Raun, W.R.; Solie, J.B.; Johnson, G.V.; Stone, M.L.; Mullen, R.W.; Freeman, K.W.; Thomason, W.E.; Lukina, E.V. Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. Agron. J. 2002, 94, 815–820. [Google Scholar] [CrossRef]
- Holland, K.H.; Schepers, J.S.; Shanahan, J.F.; Horst, G.L. Plant canopy sensor with modulated polychromatic light. In Proceedings of the 7th International Conference on Precision Agriculture, Minneapolis, MN, USA, 25–28 July 2004; pp. 25–28. [Google Scholar]
- Tremblay, N.; Wang, Z.; Ma, B.L.; Belec, C.; Vigneault, P. A comparison of crop data measured by two commercial sensors for variable-rate nitrogen application. Precis. Agric. 2009, 10, 145–161. [Google Scholar] [CrossRef]
- Zhu, J.; Tremblay, N.; Liang, Y. Comparing SPAD and at LEAF values for chlorophyll assessment in crop species. Can. J. Soil Sci. 2012, 92, 645–648. [Google Scholar] [CrossRef]
- Colwell, R.N. Determining the Prevalence of Certain Cereal Crop Diseases by Means of Aerial Photography. Hilgardia 1960, 30, 205–229. [Google Scholar] [CrossRef]
- Blackmer, T.M.; Schepers, J.S.; Varvel, G.E. Light reflectance compared with other nitrogen stress measurements in corn leaves. Agron. J. 1994, 86, 934–938. [Google Scholar] [CrossRef]
- Shanahan, J.F.; Schepers, J.S.; Francis, D.D.; Varvel, G.E.; Wilhelm, W.W.; Tringe, J.M.; Schlemmer, M.R.; Major, D.J. Use of remote-sensing imagery to estimate corn grain yield. Agron. J. 2001, 93, 583–589. [Google Scholar] [CrossRef]
- Filella, I.; Serrano, L.; Serra, J.; Penuelas, J. Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis. Crop Sci. 1995, 35, 1400–1405. [Google Scholar] [CrossRef]
- Mistele, B.; Schmidhalter, U. Estimating the nitrogen nutrition index using spectral canopy reflectance measurements. Eur. J. Agron. 2008, 29, 184–190. [Google Scholar] [CrossRef]
- Campbell, J.B.; Wynne, R.H. Introduction to Remote Sensing, 3rd ed.; The Guilford Press: New York, NY, USA, 2011. [Google Scholar]
- Kleman, J.; Fagerlund, E. Influence of different nitrogen and irrigation treatments on the spectral reflectance of barley. Remote Sens. Environ. 1987, 21, 1–14. [Google Scholar] [CrossRef]
- Wanjura, D.F.; Hatfield, J.L. Sensitivity of spectral vegetative indices to crop biomass. Trans. ASAE 1987, 30, 810–816. [Google Scholar] [CrossRef]
- Walburg, G.M.M.E.; Bauer, M.E.; Daughtry, C.S.T.; Housley, T.L. Effects of nitrogen nutrition on the growth, yield, and reflectance characteristics of corn canopies 1. Agron. J. 1982, 74, 677–683. [Google Scholar] [CrossRef]
- Peñuelas, J.; Gamon, J.A.; Fredeen, A.L.; Merino, J.; Field, C.B. Reflectance indices associated with physiological changes in nitrogen-and water-limited sunflower leaves. Remote Sens. Environ. 1994, 48, 135–146. [Google Scholar] [CrossRef]
- Ma, B.L.; Morrison, M.J.; Dwyer, L.M. Canopy light reflectance and field greenness to assess nitrogen fertilization and yield of maize. Agron. J. 1996, 88, 915–920. [Google Scholar] [CrossRef]
- Solie, J.B.; Raun, W.R.; Whitney, R.W.; Stone, M.L.; Ringer, J.D. Optical sensor based field element size and sensing strategy for nitrogen application. Trans. ASAE 1996, 39, 1983–1992. [Google Scholar] [CrossRef]
- Mulla, D.J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng. 2013, 114, 358–371. [Google Scholar] [CrossRef]
- Raun, W.R.; Solie, J.B.; Johnson, G.V.; Stone, M.L.; Lukina, E.V.; Thomason, W.E.; Schepers, J.S. In-season prediction of potential grain yield in winter wheat using canopy reflectance. Agron. J. 2001, 93, 131–138. [Google Scholar] [CrossRef]
- Ma, B.L.; Dwyer, L.M.; Costa, C.; Cober, E.R.; Morrison, M.J. Early prediction of soybean yield from canopy reflectance measurements. Agron. J. 2001, 93, 1227–1234. [Google Scholar] [CrossRef]
- Teal, R.K.; Tubana, B.; Girma, K.; Freeman, K.W.; Arnall, D.B.; Walsh, O.; Raun, W.R. In-season prediction of corn grain yield potential using normalized difference vegetation index. Agron. J. 2006, 98, 1488–1494. [Google Scholar] [CrossRef]
- Fox, R.H.; Walthall, C.L. Crop monitoring technologies to assess nitrogen status. Nitrogen Agric. Syst. 2008, 49, 647–674. [Google Scholar]
- Sripada, R.P.; Schmidt, J.P.; Dellinger, A.E.; Beegle, D.B. Evaluating multiple indices from a canopy reflectance sensor to estimate corn N requirements. Agron. J. 2008, 100, 1553–1561. [Google Scholar] [CrossRef]
- Kitchen, N.R.; Sudduth, K.A.; Drummond, S.T.; Scharf, C.; Palm, H.L.; Roberts, D.F.; Vories, E.D. Ground-based canopy reflectance sensing for variable-rate nitrogen corn fertilization. Agron. J. 2010, 102, 71–84. [Google Scholar] [CrossRef]
- Ali, A.M. Development of an algorithm for optimizing nitrogen fertilization in wheat using GreenSeeker proximal optical sensor. Exp. Agric. 2020, 56, 688–698. [Google Scholar] [CrossRef]
- Scharf, C.; Shannon, D.K.; Palm, H.L.; Sudduth, K.A.; Drummond, S.T.; Kitchen, N.R.; Mueller, L.J.; Hubbard, V.C.; Oliveira, L.F. Sensor-based nitrogen applications out-performed producer-chosen rates for corn in on-farm demonstrations. Agron. J. 2011, 103, 1683–1691. [Google Scholar] [CrossRef]
- Mamo, M.; Malzer, G.L.; Mulla, D.J.; Huggins, D.R.; Strock, J. Spatial and temporal variation in economically optimum nitrogen rate for corn. Agron. J. 2003, 95, 958–964. [Google Scholar] [CrossRef]
- Schröder, J.J.; Neeteson, J.J.; Oenema, O.; Struik, C. Does the crop or the soil indicate how to save nitrogen in maize production? Reviewing the state of the art. Field Crops Res. 2000, 66, 151–164. [Google Scholar] [CrossRef]
- Lemaire, G.; Jeuffroy, M.H.; Gastal, F. Diagnosis tool for plant and crop N status in vegetative stage: Theory and practices for crop N management. Eur. J. Agron. 2008, 28, 614–624. [Google Scholar] [CrossRef]
- Raun, W.R.; Solie, J.B.; Stone, M.L.; Martin, K.L.; Freeman, K.W.; Mullen, R.W.; Zhang, H.; Schepers, J.S.; Johnson, G.V. Optical sensor-based algorithm for crop nitrogen fertilization. Commun. Soil Sci. Plant Anal. 2005, 36, 2759–2781. [Google Scholar] [CrossRef]
- Colaço, A.F.; Bramley, R.G. Do crop sensors promote improved nitrogen management in grain crops? Field Crops Res. 2018, 218, 126–140. [Google Scholar] [CrossRef]
- Holland, K.H.; Schepers, J.S. Derivation of a variable rate nitrogen application model for in-season fertilization of corn. Agron. J. 2010, 102, 1415–1424. [Google Scholar] [CrossRef]
- Samborski, S.M.; Tremblay, N.; Fallon, E. Strategies to make use of plant sensors-based diagnostic information for nitrogen recommendations. Agron. J. 2009, 101, 800–816. [Google Scholar] [CrossRef]
- Stafford, J. Precision Agriculture for Sustainability; Burleigh Dodds Science Publishing Limited: Cambridge, UK, 2018; 494p. [Google Scholar]
- Hallik, L.; Šarauskis, E.; Kazlauskas, M.; Bručienė, I.; Mozgeris, G.; Steponavičius, D.; Tõrra, T. Proximal sensing sensors for monitoring crop growth. In Information and Communication Technologies for Agriculture—Theme I: Sensors; Springer International Publishing: Cham, Switzerland, 2022; pp. 43–97. [Google Scholar]
- Nguyen, H.T.; Lee KyuJong, L.K.; Lee ByunWoo, L.B. Recommendation of nitrogen topdressing rates at panicle initiation stage of rice using canopy reflectance. J. Crop Sci. Biotech 2008, 11, 141–150. [Google Scholar]
- Xue, L.; Li, G.; Qin, X.; Yang, L.; Zhang, H. Topdressing nitrogen recommendation for early rice with an active sensor in south China. Precis. Agric. 2014, 15, 95–110. [Google Scholar] [CrossRef]
- Bijay-Singh; Varinderpal-Singh; Purba, J.; Sharma, R.K.; Jat, M.L.; Yadvinder-Singh; Thind, H.S.; Gupta, R.K.; Choudhary, O.P.; Chandna, P.; et al. Site-specific fertilizer nitrogen management in irrigated transplanted rice (Oryza sativa) using an optical sensor. Precis. Agric. 2015, 16, 455–475. [Google Scholar] [CrossRef]
- Ali, A.M.; Thind, H.S.; Sharma, S. Prediction of dry direct-seeded rice yields using chlorophyll meter, leaf color chart and GreenSeeker optical sensor in northwestern India. Field Crops Res. 2014, 161, 11–15. [Google Scholar] [CrossRef]
- Yao, Y.; Miao, Y.; Huang, S.; Gao, L.; Ma, X.; Zhao, G.; Jiang, R.; Chen, X.; Zhang, F.; Yu, K.; et al. Active canopy sensor-based precision N management strategy for rice. Agron. Sustain. Dev. 2012, 32, 925–933. [Google Scholar] [CrossRef]
- Ali, A.M.; Thind, H.S.; Varinderpal-Singh; Bijay-Singh. A framework for refining nitrogen management in dry direct-seeded rice using GreenSeeker™ optical sensor. Comput. Electron. Agric. 2015, 110, 114–120. [Google Scholar] [CrossRef]
- Cao, Q.; Miao, Y.; Shen, J.; Yu, W.; Yuan, F.; Cheng, S.; Huang, S.; Wang, H.; Yang, W.; Liu, F. Improving in-season estimation of rice yield potential and responsiveness to topdressing nitrogen application with Crop Circle active crop canopy sensor. Precis. Agric. 2016, 17, 136–154. [Google Scholar] [CrossRef]
- Bijay-Singh; Sharma, R.K.; Jaspreet-Kaur; Jat, M.L.; Martin, K.L.; Yadvinder-Singh; Varinderpal-Singh; Chandna, P.; Choudhary, O.P.; Gupta, R.K.; et al. Assessment of the nitrogen management strategy using an optical sensor for irrigated wheat. Agron. Sustain. Dev. 2011, 31, 589–603. [Google Scholar] [CrossRef]
- Bijay-Singh; Varinderpal-Singh; Yadvinder-Singh; Thind, H.S.; Kumar, A.; Choudhary, O.P.; Gupta, R.K.; Vashistha, M. Site-specific fertilizer nitrogen management using optical sensor in irrigated wheat in the Northwestern India. Agric. Res. 2017, 6, 159–168. [Google Scholar] [CrossRef]
- Sulochna; Alam, M.P.; Ali, N.; Singh, S.K. Precision nitrogen management on nutrient uptake and nitrogen use efficiency in irrigated wheat. Curr. J. Appl. Sci. Technol. 2018, 31, 1–6. [Google Scholar]
- Cao, Q.; Miao, Y.; Feng, G.; Gao, X.; Liu, B.; Liu, Y.; Li, F.; Khosla, R.; Mulla, D.J.; Zhang, F. Improving nitrogen use efficiency with minimal environmental risks using an active canopy sensor in a wheat-maize cropping system. Field Crops Res. 2017, 214, 365–372. [Google Scholar] [CrossRef]
- Solari, F.; Shanahan, J.; Ferguson, R.; Schepers, J.; Gitelson, A. Active sensor reflectance measurements of corn nitrogen status and yield potential. Agron. J. 2008, 100, 571–579. [Google Scholar] [CrossRef]
- Wang, X.; Miao, Y.; Dong, R.; Chen, Z.; Guan, Y.; Yue, X.; Fang, Z.; Mulla, D.J. Developing active canopy sensor-based precision nitrogen management strategies for maize in Northeast China. Sustainability 2019, 11, 706. [Google Scholar] [CrossRef]
- Ali, A.M.; Abou-Amer, I.; Ibrahim, S.M. Using GreenSeeker active optical sensor for optimizing maize nitrogen fertilization in calcareous soils of Egypt. Arch. Agron. Soil Sci. 2018, 64, 1083–1093. [Google Scholar] [CrossRef]
- Fox, R.H.; Piekielek, W.P.; Macneal, K.M. Using a chlorophyll meter to predict nitrogen fertilizer needs of winter wheat. Commun. Soil Sci. Plant Anal. 1994, 25, 171–181. [Google Scholar] [CrossRef]
- Piekkielek, W.P.; Fox, R.H. Use of a chlorophyll meter to predict sidedress nitrogen requirements for maize. Agron. J. 1992, 84, 59–65. [Google Scholar] [CrossRef]
- Varvel, G.E.; Schepers, J.S.; Francis, D.D. Ability for in-season correction of nitrogen deficiency in corn using chlorophyll meters. Soil Sci. Soc. Am. J. 1997, 61, 1233–1239. [Google Scholar] [CrossRef]
- Peng, S.; Garcia, F.V.; Laza, R.C.; Cassman, K.G. Adjustment for specific leaf weight improves chlorophyll meter’s estimate of rice leaf nitrogen concentration. Agron. J. 1993, 85, 987–990. [Google Scholar] [CrossRef]
- Blackmer, T.M.; Schepers, J.S. Techniques for monitoring crop nitrogen status in corn. Commun. Soil Sci. Plant Anal. 1994, 25, 1791–1800. [Google Scholar] [CrossRef]
- Piekielek, W.P.; Fox, R.H.; Toth, J.D.; Macneal, K.E. Use of a chlorophyll meter at the early dent stage of corn to evaluate nitrogen sufficiency. Agron. J. 1995, 87, 403–408. [Google Scholar] [CrossRef]
- Argenta, G.; Silva, R.F.D.; Sangoi, L. Leaf relative chlorophyll content as an indicator parameter to predict nitrogen fertilization in maize. Ciência Rural 2004, 34, 1379–1387. [Google Scholar] [CrossRef]
- Rashid, M.T.; Voroney, P.; Parkin, G. Predicting nitrogen fertilizer requirements for corn by chlorophyll meter under different N availability conditions. Can. J. Soil Sci. 2005, 85, 149–159. [Google Scholar] [CrossRef]
- Zhang, J.; Blackmer, A.M.; Blackmer, T.M. Differences in physiological age affect diagnosis of nitrogen deficiencies in cornfields. Pedosphere 2008, 18, 545–553. [Google Scholar] [CrossRef]
- Ziadi, N.; Brassard, M.; Bélanger, G.; Claessens, A.; Tremblay, N.; Cambouris, A.N.; Nolin, M.C.; Parent, L.É. Chlorophyll measurements and nitrogen nutrition index for the evaluation of corn nitrogen status. Agron. J. 2008, 100, 1264–1273. [Google Scholar] [CrossRef]
- Fox, R.H.; Piekielek, W.P.; Macneal, K.E. Comparison of late-season diagnostic tests for predicting nitrogen status of corn. Agron. J. 2001, 93, 590–597. [Google Scholar] [CrossRef]
- Hawkins, J.A.; Sawyer, J.E.; Barker, D.W.; Lundvall, J.P. Using relative chlorophyll meter values to determine nitrogen application rates for corn. Agron. J. 2007, 99, 1034–1040. [Google Scholar] [CrossRef]
- Zhang, J.; Blackmer, A.M.; Blackmer, T.M. Reliability of chlorophyll meter measurements prior to corn silking as affected by the leaf change problem. Commun. Soil Sci. Plant Anal. 2009, 40, 2087–2093. [Google Scholar] [CrossRef]
- Peng, S.; Garcia, F.V.; Laza, R.C.; Sanico, A.L.; Visperas, R.M.; Cassman, K.G. Increased N-use efficiency using a chlorophyll meter on high-yielding irrigated rice. Field Crops Res. 1996, 47, 243–252. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, J. Comparison of upper leaf and lower leaf of rice plants in response to supplemental nitrogen levels. J. Pant Nutr. 2003, 26, 607–617. [Google Scholar] [CrossRef]
- Li, G.; Xue, L.; You, J.; Wang, S.; Ding, Y.; Wu, H.; Yang, W. Spatial distribution of leaf N content and SPAD value and determination of the suitable leaf for N diagnosis in rice. Sci. Agric. Sin. 2007, 40, 1127–1134. [Google Scholar]
- Li, J.; Yang, J.; Fei, P.; Song, J.; Li, D.; Ge, C.; Chen, W. Responses of rice leaf thickness, SPAD readings and chlorophyll a/b ratios to different nitrogen supply rates in paddy field. Field Crops Res. 2009, 114, 426–432. [Google Scholar]
- Hassanijalilian, O.; Igathinathane, C.; Doetkott, C.; Bajwa, S.; Nowatzki, J.; Esmaeili, S.A.H. Chlorophyll estimation in soybean leaves infield with smartphone digital imaging and machine learning. Comput. Electron. Agric. 2020, 174, 105433. [Google Scholar] [CrossRef]
- Zheng, J.; Song, X.; Yang, G.; Du, X.; Mei, X.; Yang, X. Remote sensing monitoring of rice and wheat canopy nitrogen: A review. Remote Sens. 2022, 14, 5712. [Google Scholar] [CrossRef]
- Jat, R.A.; Wani, S.P.; Sahrawat, K.L.; Singh, P.; Dhaka, S.R.; Dhaka, B.L. Recent approaches in nitrogen management for sustainable agricultural production and eco-safety. Arch. Agron. Soil Sci. 2012, 58, 1033–1060. [Google Scholar] [CrossRef]
- Hussain, F.; Bronson, K.F.; Singh, B.; Peng, S. Use of chlorophyll meter sufficiency indices for nitrogen management of irrigated rice in Asia. Agron. J. 2000, 92, 875–879. [Google Scholar] [CrossRef]
- Balasubramanian, V.; Morales, A.C.; Cruz, R.T.; Abdulrachman, S. On-farm adaptation of knowledge-intensive nitrogen management technologies for rice systems. Nutr. Cycl. Agroecosystems 1998, 53, 59–69. [Google Scholar] [CrossRef]
- Peterson, T.A.; Blackmer, T.M.; Francis, D.D.; Schepers, J.S. Using a Chlorophyll Meter to Improve N Management: A Nebguide in Soil Resource Management; D-13, Fertility; Cooperative Extension, Institute of Agriculture and Natural Resources, University of Nebraska: Lincoln, NE, USA, 1993. [Google Scholar]
- Balasubramanian, V.; Morales, A.C.; Cruz, R.T.; Thiyagarajan, T.M.; Nagarajan, R.; Babu, M.; Abdulrachman, S.; Hai, L.H. Adaptation of the chlorophyll meter (SPAD) technology for real-time N management in rice: A review. Int. Rice Res. Notes 2000, 25, 4–8. [Google Scholar]
- Maiti, D.; Das, D.K.; Karak, T.; Banerjee, M. Management of nitrogen through the use of leaf color chart (LCC) and soil plant analysis development (SPAD) or chlorophyll meter in rice under irrigated ecosystem. Sci. World J. 2004, 4, 838–846. [Google Scholar] [CrossRef]
- Nagarajan, R.; Ramanathan, S.; Muthukrishnan, P.; Stalin, P.; Ravi, V.; Babu, M.; Selvam, S.; Sivanatham, M.; Dobermann, A.; Witt, C. Site-specific nutrient management in irrigated rice systems of Tamil Nadu, India. In Increasing Productivity of Intensive Rice Systems through Site-Specific Nutrient Management; International Rice Research Institute (IRRI): Laguna, Philippines, 2004; pp. 101–123. [Google Scholar]
- Huang, J.; He, F.; Cui, K.; Buresh, R.J.; Xu, B.; Gong, W.; Peng, S. Determination of optimal nitrogen rate for rice varieties using a chlorophyll meter. Field Crops Res. 2008, 105, 70–80. [Google Scholar] [CrossRef]
- Islam, M.S.; Bhuiya, M.S.U.; Rahman, S.; Hussain, M.M. Evaluation of SPAD and LCC based nitrogen management in rice (Oryza sativa L.). Bangladesh J. Agric. Res. 2009, 34, 661–672. [Google Scholar] [CrossRef]
- Kyaw, K.K. Plot-specific N fertilizer management for improved N-use efficiency in rice based systems of Bangladesh. In Ecology and Development Series No. 12.; Vlek, L.G., Denich, M., Martius, C., Giesen, N.V.D., Eds.; Cuvillier: Göttingen, Germany, 2003. [Google Scholar]
- Maiti, D.; Das, D.K. Management of nitrogen through the use of Leaf Colour Chart (LCC) and Soil Plant Analysis Development (SPAD) in wheat under irrigated ecosystem: (Stickstoffbemessung mittels Blattfärbungstabelle (LCC) und analyse der Boden-Pflanze Entwicklung (SPAD) in Bewässerungs-Weizen Ökosystemen). Arch. Agron. Soil Sci. 2006, 52, 105–112. [Google Scholar]
- Islam, M.R.; Haque, K.S.; Akter, N.; Karim, M.A. Leaf chlorophyll dynamics in wheat based on SPAD meter reading and its relationship with grain yield. Sci. Agric 2014, 8, 13–18. [Google Scholar]
- Bijay-Singh; Varinderpal-Singh; Yadvinder-Singh; Thind, H.S.; Ajay-Kumar; Satinderpal-Singh; Choudhary, O.P.; Gupta, R.K.; Vashistha, M. Supplementing fertilizer nitrogen application to irrigated wheat at maximum tillering stage using chlorophyll meter and optical sensor. Agric. Res. 2013, 2, 81–89. [Google Scholar] [CrossRef]
- Bijay-Singh. Crop demand-driven site-specific nitrogen applications in rice (Oryza sativa) and wheat (Triticum aestivum): Some recent advances. Indian J. Agron. 2008, 53, 157–166. [Google Scholar]
- Witt, C.; Pasuquin, J.M.C.A.; Mutters, R.; Buresh, R.J. New leaf color chart for effective nitrogen management in rice. Better Crops 2005, 89, 36–39. [Google Scholar]
- Bijay-Singh. Leaf colour chart: An incredible tool for field-specific management of fertilizer nitrogen in cereals in South Asia. Agric. Res. J. 2022, 59, 583–601. [Google Scholar]
- Varinderpal-Singh; Yadvinder-Singh; Bijay-Singh; Baldev-Singh; Gupta, R.K.; Jagmohan-Singh; Ladha, J.K.; Balasubramanian, V. Performance of site-specific nitrogen management for irrigated transplanted rice in northwestern India. Arch. Agron. Soil Sci. 2007, 53, 567–579. [Google Scholar] [CrossRef]
- Yadvinder-Singh; Bijay-Singh; Ladha, J.K.; Bains, J.S.; Gupta, R.K.; Jagmohan-Singh; Balasubramanian, V. On-farm evaluation of leaf color chart for need-based nitrogen management in irrigated transplanted rice in northwestern India. Nutr. Cycl. Agroecosystems 2007, 78, 167–176. [Google Scholar] [CrossRef]
- Thind, H.S.; Bijay-Singh; Pannu, R.P.S.; Yadvinder-Singh; Varinderpal-Singh; Gupta, R.K.; Vashistha, M.; Jagmohan-Singh; Kumar, A. Relative performance of neem (Azadirachta indica) coated urea vis-a-vis ordinary urea applied to rice on the basis of soil test or following need based nitrogen management using leaf colour chart. Nutr. Cycl. Agroecosystems 2010, 87, 1–8. [Google Scholar]
- Porpavai, S.; Muralikrishnasamy, S.; Nadanassababady, T.; Jayapaul, P.; Balasubramanian, V. Standardising critical leaf colour chart values for transplanted rice in Cauvery New Delta. Agric. Sci. Dig. 2002, 22, 207–208. [Google Scholar]
- Bijay-Singh; Gupta, R.K.; Singh, Y.; Gupta, S.K.; Singh, J.; Bains, J.S.; Vashishta, M. Need-based nitrogen management using leaf color chart in wet direct-seeded rice in northwestern India. J. New Seeds 2006, 8, 35–47. [Google Scholar] [CrossRef]
- Yogendra, N.D.; Kumara, B.H.; Chandrashekar, N.; Prakash, N.B.; Anantha, M.S.; Shashidhar, H.E. Real-time nitrogen management in aerobic rice by adopting leaf color chart (LCC) as influenced by silicon. J. Plant Nutr. 2017, 40, 1277–1286. [Google Scholar] [CrossRef]
- Lone, A.H.; Najar, G.R.; Sofi, J.A.; Ganie, M.A.; Mir, S.A. Calibrating leaf colour chart for optimal fertilizer nitrogen management in basmati rice under temperate conditions of Kashmir. Appl. Biol. Res. 2016, 18, 293–298. [Google Scholar] [CrossRef]
- Premalatha, B.R. Use of leaf colour chart for nitrogen management as a tool in bridging the yield gap in rainfed rice (Oryza sativa L.) production. Adv. Res. J. Crop. Improv. 2017, 8, 36–44. [Google Scholar] [CrossRef]
- Shukla, A.K.; Ladha, J.K.; Singh, V.K.; Dwivedi, B.S.; Balasubramanian, V.; Gupta, R.K.; Sharma, S.K.; Singh, Y.; Pathak, H.; Pandey, S.; et al. Calibrating the leaf color chart for nitrogen management in different genotypes of rice and wheat in a systems perspective. Agron. J. 2004, 96, 1606–1621. [Google Scholar] [CrossRef]
- Ravi, S.; Ramesh, S.; Chandrasekaran, B. Exploitation of hybrid vigour in rice hybrid (Oryza sativa L.) through green manure and leaf colour chart (LCC) based N application. Asian Plant Sci. 2007, 6, 282–287. [Google Scholar] [CrossRef]
- Suresh, M.; Balaguravaiah, D.; Jayasree, G.; Kumar, B.N. Integrated approaches through leaf colour chart and SPAD based N management on yield, N concentration in leaf and nutrients uptake in Rice (Oryza sativa L.). Res. J. Agric. Sci. 2015, 6, 680–683. [Google Scholar]
- Marahatta, S. Increasing productivity of an intensive rice based system through site specific nutrient management in western terai of Nepal. J. Agric. Environ. 2017, 18, 140–150. [Google Scholar] [CrossRef]
- Witt, C.; Buresh, R.J.; Peng, S.; Balasubramanian, V.; Dobermann, A. Nutrient management. In Rice: A Practical Guide to Nutrient Management; Fairhurst, T.H., Witt, C., Buresh, R., Dobermann, A., Eds.; International Rice Research Institute: Los Baños, Philippines; International Plant Nutrition Institute and International Potash Institute: Singapore, 2007. [Google Scholar]
- Peng, S.; Buresh, R.J.; Huang, J.; Zhong, X.; Zou, Y.; Yang, J.; Wang, G.; Liu, Y.; Hu, R.; Tang, Q.; et al. Improving nitrogen fertilization in rice by sites-specific N management. A review. Agron. Sustain. Dev. 2010, 30, 649–656. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, Q.C.; Witt, C.; Buresh, R.J. Opportunities for yield increases and environmental benefits through site-specific nutrient management in rice systems of Zhejiang province, China. Agric. Syst. 2007, 94, 801–806. [Google Scholar] [CrossRef]
- Bijay-Singh; Varinderpal-Singh; Yadvinder-Singh; Thind, H.S.; Kumar, A.; Gupta, R.K.; Kaul, A.; Vashistha, M. Fixed-time adjustable dose site-specific fertilizer nitrogen management in transplanted irrigated rice (Oryza sativa L.) in South Asia. Field Crops Res. 2012, 126, 63–69. [Google Scholar] [CrossRef]
- Bijay-Singh; Varinderpal-Singh; Yadvinder-Singh; Kumar, A.; Jagmohan-Singh; Vashistha, M.; Thind, H.S.; Gupta, R.K. Fertilizer nitrogen management in irrigated transplanted rice using dynamic threshold greenness of leaves. Agric. Res. 2016, 5, 174–181. [Google Scholar] [CrossRef]
- Padilla, F.M.; Karaca, C.; Peña-Fleitas, M.T.; Gallardo, M.; Rodríguez, A.; Thompson, R.B. Cultivar effect on proximal optical sensor measurements and estimation of leaf N content in muskmelon and sweet pepper. Eur. J. Agron. 2024, 159, 127249. [Google Scholar] [CrossRef]
- Padilla, F.M.; Farneselli, M.; Gianquinto, G.; Tei, F.; Thompson, R.B. Monitoring nitrogen status of vegetable crops and soils for optimal nitrogen management. Agric. Water Manag. 2020, 240, 106356. [Google Scholar] [CrossRef]
- Padilla, F.M.; Gallardo, M.; Peña-Fleitas, M.T.; de Souza, R.; Thompson, R.B. Proximal optical sensors for nitrogen management of vegetable crops: A review. Sensors 2018, 18, 2083. [Google Scholar] [CrossRef]
Year | Innovation Description | References |
---|---|---|
1987, 1996 | The implementation of leaf color charts (LCC) in Asia represents a significant advancement in the field of precision agriculture, offering a cost-effective means of assessing leaf N content. | [28,56] |
1992 | The SPAD chlorophyll meter, which measures transmission at 650 and 940 nm, was developed to identify N deficiencies and assess N fertilizer requirements in maize. | [57,58] |
1995 | The introduction of N sufficiency indices is based on a comparison of SPAD meter readings from the test plot with those from a well-fertilized or N-rich reference plot. | [59] |
1996 | Development of a canopy reflectance sensor (measuring reflectance at 671 and 780 nm) to detect variations in plant nitrogen stress. | [60] |
2002 | The launch of the GreenSeeker canopy reflectance sensor, which measures reflectance at 650 and 770 nm, is announced to monitor N levels. | [61]; NTech Industries |
2004 | The introduction of the Crop Circle canopy reflectance sensor, which is capable of measuring reflectance at 590 and 880 nm, or 670, 730, and 780 nm. | [62]; Holland Scientific |
2009 | The Yara N-Sensor is employed for the management of N in crops, to provide real-time N management through the measurement of canopy reflectance and the dynamic calculation of N requirements. | [63]; Yara International |
2012 | The release of the atLeaf chlorophyll meter, which measures transmission at 660 and 940 nm, is announced as a new tool for assessing leaf N content. | [64]; FT Green LLC |
Tool | Methodology | Performance | Advantages | Limitations |
---|---|---|---|---|
GreenSeeker | -Data Collection: Uses NDVI to assess crop health. -Calibration: Establish calibration models with plant tissue samples. -Application: Real-time data collection and variable rate application integration. | -Accuracy: High accuracy in predicting crop N status. -Efficiency: Effective in optimizing N application rates, leading to higher yields and reduced waste. | -Simple and user-friendly. -Effective real-time data collection. -High adaptability to various crops and conditions. | -Can be influenced by soil moisture, residue cover, and sunlight intensity. -Requires site-specific calibration adjustments. |
Crop Circle | -Data Collection: Measures multiple vegetation indices (NDVI, NDRE, REVI). -Calibration: Similar calibration process with tissue sampling. -Application: Used for real-time assessments and variable rate technology. | -Accuracy: Comparable to GreenSeeker with additional indices providing more detailed insights. -Efficiency: Enhances N use efficiency and improves yield predictions. | -Measures multiple indices for detailed insights. -Useful in fields with high variability. -Provides comprehensive assessment of plant health. | -More complex data interpretation. -Requires advanced training and understanding. |
Yara N-Sensor | -Data Collection: Measures canopy reflectance across various wavelengths. -Calibration: Uses pre-calibrated models specific to crop types. -Application: Mounted on tractors for real-time application. | -Accuracy: High precision in variable N application. -Efficiency: Reduces N use and improves crop performance under varying conditions. | -High precision and detailed analysis. -Real-time, on-the-go assessments. -Integrates seamlessly with tractor-mounted systems. | -Higher cost and complexity. -May be less accessible for smaller operations. |
Aspect | Critical Threshold Value Approach | Dynamic Sufficiency Index Approach |
---|---|---|
Definition | Uses a predetermined chlorophyll meter reading as a threshold for N application. | Uses a calculated sufficiency index, comparing the chlorophyll reading to a reference value, to guide N application. |
Threshold | Fixed value, often based on previous research or empirical data. | Dynamic value, is often based on crop-specific and environmental factors. |
Flexibility | Less flexible, as it does not adjust for varying crop and environmental conditions. | More flexible, and adjusts based on current crop and environmental conditions. |
Application Frequency | May require fewer measurements if the threshold is stable and well-defined. | Requires frequent measurements to assess the sufficiency index. |
Data Interpretation | Straightforward, with a clear cut-off for application decisions. | Requires comparison to reference values and calculation of the sufficiency index. |
Adaptability | Less adaptable to changes in crop growth or environmental conditions. | More adaptable to varying conditions, allowing for precise adjustments. |
Example Use | Commonly used in general recommendations where conditions are stable. | Often used in precision agriculture where conditions and crop needs vary. |
Advantages | Simple to implement and easy to understand. | Provides a more nuanced approach, potentially leading to better N management. |
Disadvantages | May not account for variability in crop growth or environmental conditions. | Requires more frequent data collection and analysis. |
Aspect | Real-Time N Management Using LCC | Fixed-Time Adjustable Dose N Management with LCC | Dynamic Threshold Greenness Approach for N Management Using LCC |
---|---|---|---|
Definition | Adjusts N application in real-time based on current LCC readings. | Applies N at fixed times with adjustable doses based on LCC readings. | Adjusts N application dynamically using specific threshold greenness levels from LCC readings. |
Timing of application | Continuous monitoring and application as needed. | Pre-determined fixed times during the growing season. | Flexible timing based on greenness thresholds, not fixed. |
Adjustment flexibility | High, as it responds to real-time changes in crop conditions. | Moderate, adjusts doses at set times based on LCC readings. | High, allows for dynamic adjustments based on changing greenness levels. |
Complexity | Higher due to the need for continuous monitoring. | Moderate, requires scheduling and dose adjustments. | Higher, requires determining and monitoring appropriate greenness thresholds. |
Resource requirement | Needs frequent monitoring for real-time data collection. | Needs periodic LCC readings and planning for dose adjustments. | Needs a detailed understanding of threshold levels and good monitoring tools. |
Farmer suitability | Best for farmers with real-time monitoring tools. | Good for farmers who follow a set schedule. | Ideal for farmers who can adjust to changing conditions. |
Feature/Tool | Canopy Reflectance Sensors | Chlorophyll Meters | Leaf Color Charts |
---|---|---|---|
Principle of Operation | Measures light reflectance properties to assess plant health and N status. | Measures leaf greenness (chlorophyll content) to determine N levels. | Visual comparison of leaf color to a standard chart indicating N status. |
Accuracy | High accuracy with the ability to detect subtle differences in plant health. | High accuracy, particularly effective in identifying N deficiency. | Moderate accuracy, dependent on human visual assessment. |
Ease of Use | Requires training and calibration, and can be integrated with UAVs and other systems. | Simple to use with portable devices like SPAD meters. | Very easy to use, and no special equipment or training is required. |
Cost | The high initial cost for equipment and integration. | Moderate cost for handheld devices. | Low cost, highly affordable for smallholder farmers. |
Data Collection | Provides real-time, continuous data collection over large areas. | Provides immediate readings at specific points, requiring multiple samples for large areas. | Provides immediate visual assessment, requiring manual sampling. |
Integration with Technology | Easily integrated with GPS, GIS, IoT, and AI for advanced precision farming. | Can be integrated with data logging devices and software for data analysis. | Limited integration, primarily manual use. |
Environmental Impact | Low impact due to non-destructive and precise application of N. | Low impact with efficient N application, reducing environmental contamination. | Low impact, though less precise, and may result in over/under-application. |
Applicability in Various Conditions | Effective in a variety of crops and environmental conditions. | Effective across different crops and growth stages, especially in vegetative stages. | Effective in various crops but may be less reliable in low-light conditions. |
Suitability for Small Farms | Less suitable due to cost and complexity | Suitable due to the balance of cost and accuracy | Highly suitable due to simplicity and low cost |
Limitations | High initial cost and need for technical expertise. | Requires periodic calibration and multiple readings for accuracy. | Subjective interpretation and limited precision. |
Examples of Use | Used in advanced precision agriculture setups, often combined with drones for large-scale monitoring. | Commonly used in both research and practical farming for site-specific management. | Widely used in developing countries due to low cost and ease of use. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.M.; Salem, H.M.; Bijay-Singh. Site-Specific Nitrogen Fertilizer Management Using Canopy Reflectance Sensors, Chlorophyll Meters and Leaf Color Charts: A Review. Nitrogen 2024, 5, 828-856. https://doi.org/10.3390/nitrogen5040054
Ali AM, Salem HM, Bijay-Singh. Site-Specific Nitrogen Fertilizer Management Using Canopy Reflectance Sensors, Chlorophyll Meters and Leaf Color Charts: A Review. Nitrogen. 2024; 5(4):828-856. https://doi.org/10.3390/nitrogen5040054
Chicago/Turabian StyleAli, Ali M., Haytham M. Salem, and Bijay-Singh. 2024. "Site-Specific Nitrogen Fertilizer Management Using Canopy Reflectance Sensors, Chlorophyll Meters and Leaf Color Charts: A Review" Nitrogen 5, no. 4: 828-856. https://doi.org/10.3390/nitrogen5040054
APA StyleAli, A. M., Salem, H. M., & Bijay-Singh. (2024). Site-Specific Nitrogen Fertilizer Management Using Canopy Reflectance Sensors, Chlorophyll Meters and Leaf Color Charts: A Review. Nitrogen, 5(4), 828-856. https://doi.org/10.3390/nitrogen5040054