Enzymatic Activity Responses to Transport and Low-Temperature Storage: Implications for Plant Nitrogen Metabolism Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Experimental Manipulations
2.2.1. Transport
2.2.2. Storage
2.3. Enzymatic Activities
2.3.1. Nitrate Reductase (NR)
2.3.2. Glutamine Synthetase (GS)
2.3.3. Phosphomonoesterase (PME)
2.4. Statistical Analyses
3. Results
3.1. Transport
3.2. Cold Storage
4. Discussion
4.1. Transport and Storage
4.2. Enzymatic Activities
4.3. Plant Responses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Richardson, J.; Steffen, W.; Lucht, W.; Bendtsen, J.; Cornell, S.E.; Donges, J.F.; Drüke, M.; Fetzer, I.; Bala, G.; von Bloh, W.; et al. Earth beyond six of nine Planetary Boundaries. Sci. Adv. 2023, 9, 37. [Google Scholar] [CrossRef]
- Phoenix, G.K.; Hicks, W.K.; Cinderby, S.; Kuylenstierna, J.C.; Stock, W.D.; Dentener, F.J.; Giller, K.E.; Austin, A.T.; Lefroy, R.D.; Gimeno, B.S.; et al. Atmospheric nitrogen deposition in world biodiversity hotspots: The need for a greater global perspective in assessing N deposition impacts. Glob. Change Biol. 2006, 12, 470–476. [Google Scholar] [CrossRef]
- Steffen, W.; Broadgate, W.; Deutsch, L.; Gaffney, O.; Ludwig, C. The trajectory of the Anthropocene: The great acceleration. Anthr. Rev. 2015, 2, 81–98. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Sanford, R.L. Nutrient Cycling in Moist Tropical Forest. Annu. Rev. Ecol. Syst. 1986, 17, 137–167. [Google Scholar] [CrossRef]
- Díaz-Álvarez, E.A.; Lindig-Cisneros, R.; de la Barrera, E. Biomonitors of atmospheric nitrogen deposition: Potential uses and limitations. Conserv. Physiol. 2018, 6, coy011. [Google Scholar] [CrossRef]
- Martínez, D.N.; Díaz-Álvarez, E.A.; de la Barrera, E. Selecting biomonitors of atmospheric nitrogen deposition: Guidelines for practitioners and decision makers. Nitrogen 2021, 2, 308–320. [Google Scholar] [CrossRef]
- Guisan, A.; Tingley, R.; Baumgartner, J.B.; Naujokaitis-Lewis, I.; Sutcliffe, P.R.; Tulloch, A.I.; Regan, T.J.; Brotons, L.; McDonald-Madden, E.; Mantyka-Pringle, C.; et al. Predicting species distributions for conservation decisions. Ecol. Lett. 2013, 16, 1424–1435. [Google Scholar] [CrossRef]
- IPCC. Summary for policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Eds.; Cambridge University Press: Cambridge, UK, 2021; pp. 3–31. [Google Scholar] [CrossRef]
- Díaz-Álvarez, E.A.; de la Barrera, E.; Barrios-Hernández, E.Y.; Arróniz-Crespo, M. Morphophysiological screening of potential organisms for biomonitoring nitrogen deposition. Ecol. Indic. 2020, 108, 105729. [Google Scholar] [CrossRef]
- Martínez, D.N.; de la Barrera, E. Malezas ruderales como biomonitores del depósito de nitrógeno urbano. Ecosistemas 2024, 33, 2672. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E. Plant Physiology; Sinauer Associates: Sunderland, MA, USA, 2002. [Google Scholar]
- Tegeder, M.; Masclaux-Daubresse, C. Source and sink mechanisms of nitrogen transport and use. New Phytol. 2018, 217, 35–53. [Google Scholar] [CrossRef]
- Phoenix, G.K.; Booth, R.E.; Leake, J.R.; Read, D.J.; Grime, J.P.; Lee, J.A. Simulated pollutant nitrogen deposition increases P demand and enhances root-surface phosphatase activities of three plant functional types in a calcareous grassland. New Phytol. 2003, 161, 279–289. [Google Scholar] [CrossRef]
- Arróniz-Crespo, M.; Leake, J.R.; Horton, P.; Phoenix, G.K. Bryophyte physiological responses to, and recovery from, long-term nitrogen deposition and phosphorus fertilisation in acidic grassland. New Phytol. 2008, 180, 864–874. [Google Scholar] [CrossRef]
- Varela, Z.; García-Seoane, R.; Arróniz-Crespo, M.; Carballeira, A.; Fernández, J.A.; Aboal, J.R. Evaluation of the use of moss transplants (Pseudoscleropodium purum) for biomonitoring different forms of air pollutant nitrogen compounds. Environ. Pollut. 2016, 213, 841–849. [Google Scholar] [CrossRef]
- Scopes, R.K. Protein Purification, 3rd ed.; Springer: New York, NY, USA, 1994. [Google Scholar]
- Jagadis, K.; Pearsall, W.H. Nitrogen Metabolism in Plants: Methods and Protocols; Springer Science + Business Media, LLC: New Delhi, India, 2020. [Google Scholar]
- Díaz-Álvarez, E.A.; Reyes-García, C.; de la Barrera, E. A ∂15N assessment of nitrogen deposition for the endangered epiphytic orchid Laelia speciosa from a city and an oak forest in Mexico. J. Plant Res. 2016, 129, 863–872. [Google Scholar] [CrossRef]
- Martínez, D.N.; López-Toledo, L.; Espinosa-García, F.; Camacho-Cervantes, M.; de la Barrera, E. Ephemeral visitors or permanent residents?—Decadal change in the ruderal vegetation from a periurban university campus. Urban For. Urban Green. 2021, 65, 127372. [Google Scholar] [CrossRef]
- Smith, B.N.; Brown, W.V. The Kranz syndrome in the Gramineae as indicated by carbon isotopic ratios. Am. J. Bot. 1973, 60, 505–513. [Google Scholar] [CrossRef]
- Calderón de Rzedowski, G.; Rzedowski, J. Flora Fanerogámica del Valle de México, 2nd ed.; Instituto de Ecología, A.C. y Comisión Nacional para el Conocimiento y Uso de la Biodiversidad: Pátzcuaro, México, 2005. [Google Scholar]
- Vibrans, H. Malezas de México; CONABIO: Tlalpan, Mexico, 2020; Available online: http://www.conabio.gob.mx/malezasdemexico/2inicio/home-malezas-mexico.htm (accessed on 13 January 2025).
- Martínez, D.N.; de la Barrera, E. Physiological screening of ruderal weed biomonitors of atmospheric nitrogen deposition. Bot. Sci. 2021, 1, 573–587. [Google Scholar] [CrossRef]
- Alanís-Rodríguez, E.; Mora-Olivo, A.; Jiménez-Pérez, J.; Cuellar Rodríguez, G. Uso de árboles natios en áreas verdes urbanas: Tendencias en el noreste de México. Rev. Mex. Cienc. For. 2023, 14, 1314. [Google Scholar] [CrossRef]
- Pasiecznik, N. Fraxinus uhdei (Tropical Ash). CABI Compendium. 2021. Available online: https://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.24559 (accessed on 13 January 2025).
- Ledgard, S.F.; Sprosen, M.S.; Steele, K.W. Nitrogen fixation by nine white clover cultivars in grazed pasture, as affected by nitrogen fertilization. Plant Soil 1996, 178, 193–203. [Google Scholar] [CrossRef]
- Santangelo, J.S.; Ness, R.W.; Cohan, B.; Fitzpatrick, C.R.; Innes, S.G.; Koch, S.; Miles, L.S.; Munim, S.; Peres-Neto, P.R.; Prashad, C.; et al. Global urban environmental change drives adaptation in white clover. Science 2022, 375, 1275–1281. [Google Scholar] [CrossRef]
- de Sousa Leite, T.; Monteiro, F.A. Nitrogen form regulates cadmium uptake and accumulation in Tanzania guinea grass used for phytoextraction. Chemosphere 2019, 236, 124324. [Google Scholar] [CrossRef] [PubMed]
- Demšar, J. Statistical Comparisons of Classifiers over Multiple Data Sets. J. Mach. Learn. Res. 2006, 7, 1–30. Available online: http://jmlr.org/papers/v7/demsar06a.html (accessed on 13 January 2025).
- Crawley, M.J. The R Book, 2nd ed.; Wiley: West Sussex, UK, 2013. [Google Scholar]
- Højsgaard, S.; Halekoh, U. Linear Estimates and LS Means in the doBy Package, Version 4.6.19. Available online: https://cran.r-project.org/web/packages/doBy/vignettes/linest_lsmeans.pdf (accessed on 13 January 2025).
- Neri, L.; Faieta, M.; Di Mattia, C.; Sacchetti, G.; Mastrocola, D.; Pittia, P. Antioxidant activity in frozen plant foods: Effect of cryoprotectans, freezing process and frozen storage. Foods 2020, 9, 1886. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Jiang, Y.; Yang, Q.; Li, W.; Gan, G.; Cai, L.; Li, W.; Qin, C.; Yu, C.; Wang, Y. Mechanisms and control measures of low temperature storage-induced chilling injury to solanaceous vegetables and fruits. Front. Plant Sci. 2024, 15, 1488666. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, W.M.; Huber, S.C. Post-translational regulation of nitrate reductase: Mechanism, physiological relevance and environmental triggers. J. Exp. Bot. 2001, 52, 1981–1989. [Google Scholar] [CrossRef]
- Schrader, L.E.; Ritenour, G.L.; Eilrich, G.L.; Hageman, R.H. Some characteristics of nitrate reductase from higher plants. Plant Physiol. 1968, 43, 930–940. Available online: https://www.jstor.org/stable/4261398 (accessed on 13 January 2025). [CrossRef]
- Campa, C.; Diouf, D.; Ndoye, I.; Dreyfus, B. Differences in nitrogen metabolism of Faidherbia albida and other N2-fixing tropical woody acacias reflect habitat water availability. New Phytol. 2000, 147, 571–578. [Google Scholar] [CrossRef]
- Al Gharbi, A.; Hipkin, C.R. Studies on nitrate reductase in British angiosperms. New Phytol. 1984, 97, 629–639. [Google Scholar] [CrossRef]
- Azcón-Bieto, J.; Talón, M. Fundamentos de Fisiología Vegetal, 2nd ed.; McGraw-Hill Interamericana: Madrid, Spain, 2008. [Google Scholar]
- Francis, B.; Aravindakumar, C.T.; Brewer, P.B.; Simon, S. Plant nutrient stress adaptation: A prospect for fertilizer limited agriculture. Environ. Exp. Bot. 2023, 213, 105431. [Google Scholar] [CrossRef]
- Németh, E.; Nagy, Z.; Pécsváradi, A. Chloroplast glutamine synthetase, the key regulator of nitrogen metabolism in wheat, performs its role by fine regulation of enzyme activity via negative cooperativity of its subunits. Front. Plant Sci. 2018, 9, 191. [Google Scholar] [CrossRef] [PubMed]
- Maillard, A.; Diquélou, S.; Billard, V.; Laîné, P.; Garnica, M.; Prudent, M.; Garcia-Mina, J.-M.; Yvin, J.-C.; Ourry, A. Leaf mineral nutrient remobilization during leaf senescence and modulation by nutrient deficiency. Front. Plant Sci. 2015, 6, 317. [Google Scholar] [CrossRef]
- Lee, S.; Masclaux-Daubresse, C. Current understanding of leaf senescence in rice. Int. J. Mol. Sci. 2021, 22, 4515. [Google Scholar] [CrossRef]
- Rothstein, D.E.; Vitousek, P.M.; Simmons, B.L. An exotic tree alters decomposition and nutrient cycling in a Hawaiian montane forest. Ecosystems 2004, 7, 805–814. [Google Scholar] [CrossRef]
- Báez-Pérez, A.-L.; Lindig-Cisneros, R.; Villegas, J. Survival and growth of nursery inoculated Fraxinus uhdei in acrisol gullies. Madera y Bosques 2017, 23, 7–14. [Google Scholar] [CrossRef]
Enzyme | Species | d.f. | X2 | p |
---|---|---|---|---|
Nitrate reductase | ||||
Chloris gayana | 2 | 0.4 | 0.82 | |
Fraxinus uhdei | 2 | 1.2 | 0.55 | |
Trifolium repens | 2 | 6.4 | 0.04 | |
Glutamine synthetase | ||||
Chloris gayana | 2 | 8.4 | 0.01 | |
Fraxinus uhdei | 2 | 7.6 | 0.02 | |
Trifolium repens | 2 | 3.3 | 0.20 | |
Phosphomonoesterase | ||||
Chloris gayana | 2 | 2.8 | 0.25 | |
Fraxinus uhdei | 2 | 0.4 | 0.82 | |
Trifolium repens | 2 | 1.2 | 0.55 |
Enzyme | Species | Variable | t | p |
---|---|---|---|---|
Nitrate reductase | ||||
Chloris gayana | Time | −6.62 | <0.05 | |
Storage | −0.15 | 0.82 | ||
Time: Storage | −0.13 | 0.86 | ||
Fraxinus uhdei | Time | 5.43 | <0.05 | |
Storage | 0.28 | 0.78 | ||
Time: Storage | −0.89 | 0.38 | ||
Trifolium repens | Time | −3.61 | <0.05 | |
Storage | 0.30 | 0.77 | ||
Time: Storage | 0.13 | 0.89 | ||
Glutamine synthetase | ||||
Chloris gayana | Time | 3.85 | <0.05 | |
Storage | −0.77 | 0.45 | ||
Time: Storage | 0.39 | 0.70 | ||
Fraxinus uhdei | Time | 0.99 | 0.33 | |
Storage | 0.50 | 0.62 | ||
Time: Storage | −1.01 | 0.32 | ||
Trifolium repens | Time | 2.18 | <0.05 | |
Storage | 1.00 | 0.32 | ||
Time: Storage | 0.24 | 0.81 | ||
Phosphomonoesterase | ||||
Chloris gayana | Time | 2.58 | <0.05 | |
Storage | −0.97 | 0.34 | ||
Time: Storage | 0.85 | 0.40 | ||
Fraxinus uhdei | Time | −1.75 | 0.09 | |
Storage | −1.12 | 0.23 | ||
Time: Storage | 0.34 | 0.74 | ||
Trifolium repens | Time | 5.07 | <0.05 | |
Storage | 0.65 | 0.52 | ||
Time: Storage | −0.27 | 0.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez, D.N.; de la Barrera, E. Enzymatic Activity Responses to Transport and Low-Temperature Storage: Implications for Plant Nitrogen Metabolism Studies. Nitrogen 2025, 6, 5. https://doi.org/10.3390/nitrogen6010005
Martínez DN, de la Barrera E. Enzymatic Activity Responses to Transport and Low-Temperature Storage: Implications for Plant Nitrogen Metabolism Studies. Nitrogen. 2025; 6(1):5. https://doi.org/10.3390/nitrogen6010005
Chicago/Turabian StyleMartínez, D. Nayeli, and Erick de la Barrera. 2025. "Enzymatic Activity Responses to Transport and Low-Temperature Storage: Implications for Plant Nitrogen Metabolism Studies" Nitrogen 6, no. 1: 5. https://doi.org/10.3390/nitrogen6010005
APA StyleMartínez, D. N., & de la Barrera, E. (2025). Enzymatic Activity Responses to Transport and Low-Temperature Storage: Implications for Plant Nitrogen Metabolism Studies. Nitrogen, 6(1), 5. https://doi.org/10.3390/nitrogen6010005