Sonochemical Formation of Hydrogen Peroxide †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Apparatus and Experimental Conditions
2.3. Analytical Methods
3. Results and Discussion
4. Conclusions
- Hydrogen peroxide is a very effective oxidant for liquid-phase reactions. Ultrasonic irradiation plays an essential role in the formation of reactive species (H2O2, OH, H, O and OOH). H2O2 can be generated by the recombination of hydroxyl radicals as cavitation in aqueous solution takes place. Higher-intensity ultrasound is able to enhance H2O2 formation.
- Initial pH did not affect the efficiency of H2O2 formation substantially, but the pH values of solutions have a significant influence on the sonochemical degradation of organic pollutants. The main mechanism in the degradation of organic pollutants using ultrasound entails the generation of, and attack by, hydroxyl radicals.
- The use of hydrogen peroxide in conjunction with ultrasound is only beneficial to the point where optimum loading is achieved. At high concentrations, H2O2 can act as scavenger of radicals, especially hydroxyl radicals. The optimum value for the presence of H2O2 will depend on the nature of the pollutants and the operating conditions.
- The decomposition of hydrogen peroxide was also observed in the presence of DBP with and without an addition of H2O2 in aqueous solution. In contaminated water, hydrogen peroxide is consumed as an oxidant of organic compounds.
- Tap water contains mineral and organic chemicals that are considered to be inhibitors for most AOPs, because these chemicals are known as scavengers of hydroxyl radicals.
References
- Leong, T.; Ashokkumar, M.; Kentish, S. The fundamentals of power ultrasound—A review. Acoust. Aust. 2011, 39, 54–63. [Google Scholar]
- González-García, J.; Sáez, V.; Tudela, I.; Díez-Garcia, M.I.; Deseada Esclapez, M.; Louisnard, O. Sonochemical treatment of water polluted by chlorinated organocompounds: A review. Water 2010, 2, 28–74. [Google Scholar] [CrossRef]
- Chowdhury, P.; Viraraghavan, T. Sonochemical degradation of chlorinated organic compounds, phenolic compounds and organic dyes—A review. Sci. Total Environ. 2009, 407, 2474–2492. [Google Scholar] [CrossRef]
- Pétrier, C. 31: The use of power ultrasound for water treatment. In Power Ultrasonics; Woodhead Publishing: Oxford, UK, 2015; pp. 939–972. [Google Scholar]
- Wu, T.N.; Shi, M.C. pH-affecting sonochemical formation of hydroxyl radicals under 20 kHz ultrasonic irradiation. J. Environ. Eng. Manag. 2010, 20, 245–250. [Google Scholar]
- Dewulf, J.; Van Langenhove, H.; De Visscher, A.; Sabbe, S. Ultrasonic degradation of trichloroethylene and chlorobenzene at micromolar concentrations: Kinetics and modeling. Ultrason. Sonochem. 2001, 8, 143–150. [Google Scholar] [CrossRef]
- Thompson, L.H.; Doraiswamy, L.K. Sonochemistry: Science and engineering. Ind. Eng. Chem. Res. 1999, 38, 1215–1249. [Google Scholar] [CrossRef]
- Suslick, K.S.; Didenko, Y.; Fang, M.M.; Hyeon, T.; Kolbeck, K.J.; McNamara, W.B.; Wong, M. Acoustic cavitation and its chemical consequences. Philos. Trans. R. Soc. Lond. A 1999, 357, 335–353. [Google Scholar] [CrossRef]
- Adewuyi, Y.G. Sonochemistry: Environmental science and engineering applications. Ind. Eng. Chem. Res. 2001, 40, 4681–4715. [Google Scholar] [CrossRef]
- Hayashi, N.; Liang, J.; Choshi, H.; Kasai, E. Hexachlorobenzene removal from a model sediment by using ultrasonic irradiation. Water Sci. Technol. 2009, 59, 737–744. [Google Scholar] [CrossRef]
- Campbell, T.; Hoffmann, M.R. Sonochemical degradation of perfluorinated surfactants: Power and multiple frequency effects. Sep. Purif. Technol. 2015, 156, 1019–1027. [Google Scholar] [CrossRef]
- Włodarczyk-Makuła, M. Physical and Chemical Fates of Organic Micropollutants; Scholars’ Press: Saarbrucken, Germany, 2015. [Google Scholar]
- Pochwat, K.; Słyś, D.; Kordana, S. The temporal variability of a rainfall synthetic hyetograph for the dimensioning of stormwater retention tanks in small urban catchments. J. Hydrol. 2017, 549, 501–511. [Google Scholar] [CrossRef]
- Naumczyk, J.; Prokurat, I.; Marcinowski, P. Landfill Leachates Treatment by H2O2/UV, O3/H2O2, Modified Fenton, and Modified Photo-Fenton Methods. Int. J. Photoenergy 2012, 2012, 1–9. [Google Scholar] [CrossRef]
- Kida, M.; Książek, S.; Koszelnik, P. Preliminary studies on removal of dibutyl phthalate from aqueous solutions using ultrasound. Ecol. Eng. 2016, 48, 233–238. [Google Scholar] [CrossRef]
- Kida, M.; Ziembowicz, S.; Koszelnik, P. Removal of organochlorine pesticides (OCPs) from aqueous solutions using hydrogen peroxide, ultrasonic waves, and a hybrid process. Sep. Purif. Technol. 2018, 192, 457–464. [Google Scholar] [CrossRef]
- Gondrexon, N.; Renaudin, V.; Petrier, C.; Boldo, P.; Bernis, A.; Gonthier, Y. Degradation of pentachlorophenol aqueous solutions using a continuous flow ultrasonic reactor: Experimental performance and modeling. Ultrason. Sonochem. 1999, 54, 125–131. [Google Scholar] [CrossRef]
- Entezari, M.H.; Pétrier, C.; Devidal, P. Sonochemical degradation of phenol in water: A comparison of classical equipment with a new cylindrical reactor. Ultrason. Sonochem. 2003, 10, 103–108. [Google Scholar] [CrossRef]
- Naffrechoux, E.; Combet, E.; Fanget, B.; Petrier, C. Reduction of chloroform formation potential of humic acid by sonolysis and ultraviolet irradiation. Water Res. 2003, 37, 1948–1952. [Google Scholar] [CrossRef]
- Villaroel, E.; Silva-Agredo, J.; Petrier, C.; Taborda, G.; Torres-Palma, R.A. Ultrasonic degradation of acetaminophen in water: Effect of sonochemical parameters and water matrix. Ultrason. Sonochem. 2014, 21, 1763–1769. [Google Scholar] [CrossRef]
- Lim, M.; Son, Y.; Khim, J. The effects of hydrogen peroxide on the sonochemical degradation of phenol and bisphenol A. Ultrason. Sonochem. 2014, 21, 1976–1981. [Google Scholar] [CrossRef]
- Xu, L.J.; Chu, W.; Graham, N. Sonophotolytic degradation of phthalate acid esters in water and wastewater: Influence of compound properties and degradation mechanisms. J. Hazard. Mater. 2015, 288, 43–50. [Google Scholar] [CrossRef]
- Zhang, K.; Gao, N.; Deng, Y.; Lin, T.F.; Ma, Y.; Li, L.; Sui, M. Degradation of bisphenol—A using ultrasonic irradiation assisted by low-concentration hydrogen peroxide. J. Environ. Sci. 2011, 23, 31–36. [Google Scholar] [CrossRef]
- Xu, L.J.; Chu, W.; Graham, N. A systematic study of the degradation of dimethyl phthalate using a high-frequency ultrasonic process. Ultrason. Sonochem. 2013, 20, 892–899. [Google Scholar] [CrossRef] [PubMed]
- Kusiak, M.; Stępniak, L. Sonochemical methods of removing the organic impurities from water. Proc. ECOpole 2010, 4, 439–445. [Google Scholar]
- Kwarciak-Kozłowska, A.; Krzywicka, A. Effect of ultrasonic field to increase the biodegradability of coke processing wastewater. Arch. Waste Manag. Environ. Prot. 2015, 17, 133–142. [Google Scholar]
- Jiang, Y.; Pétrier, C.; Waite, T.D. Effect of pH on the ultrasonic degradation of ionic aromatic compounds in aqueous solution. Ultrason. Sonochem. 2002, 9, 163–168. [Google Scholar] [CrossRef]
- Isariebel, Q.P.; Carine, J.L.; Ulises-Javier, J.H.; Anne-Marie, W.; Henri, D. Sonolysis of levodopa and paracetamol in aqueous solutions. Ultrason. Sonochem. 2009, 16, 610–616. [Google Scholar] [CrossRef]
- Ku, Y.; Tu, Y.H.; Ma, C.M. Effect of hydrogen peroxide on the decomposition of monochlorophenols by sonolysis in aqueous solution. Water Res. 2005, 39, 1093–1098. [Google Scholar] [CrossRef]
- Pétrier, C.; Torres-Palma, R.; Combet, E.; Sarantakos, G.; Baup, S.; Pulgarin, C. Enhanced sonochemical degradation of bisphenol—A by bicarbonate ions. Ultrason. Sonochem. 2010, 17, 111–115. [Google Scholar] [CrossRef]
- Minero, C.; Pellizzari, P.; Maurino, V.; Pelizzetti, E.; Vione, D. Enhancement of dye sonochemical degradation by some inorganic anions present in natural waters. Appl. Catal. B 2008, 77, 308–316. [Google Scholar] [CrossRef]
- Nikfar, E.; Dehghani, M.H.; Mahvi, A.H.; Rastkari, N.; Asif, M.; Tyagi, I.; Gupta, V.K. Removal of Bisphenol A from aqueous solutions using ultrasonic waves and hydrogen peroxide. J. Mol. Liq. 2016, 213, 332–338. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziembowicz, S.; Kida, M.; Koszelnik, P. Sonochemical Formation of Hydrogen Peroxide. Proceedings 2018, 2, 188. https://doi.org/10.3390/ecws-2-04957
Ziembowicz S, Kida M, Koszelnik P. Sonochemical Formation of Hydrogen Peroxide. Proceedings. 2018; 2(5):188. https://doi.org/10.3390/ecws-2-04957
Chicago/Turabian StyleZiembowicz, Sabina, Małgorzata Kida, and Piotr Koszelnik. 2018. "Sonochemical Formation of Hydrogen Peroxide" Proceedings 2, no. 5: 188. https://doi.org/10.3390/ecws-2-04957
APA StyleZiembowicz, S., Kida, M., & Koszelnik, P. (2018). Sonochemical Formation of Hydrogen Peroxide. Proceedings, 2(5), 188. https://doi.org/10.3390/ecws-2-04957