Bandwidth Selection for Prediction in Regression †
Abstract
:1. Introduction
2. The Bandwidth Selection Method
References
- De Waal, T.; Pannekoek, J.; Scholtus, S. Handbook of Statistical Data Editing and Imputation; John Wiley: New York, NY, USA, 2011. [Google Scholar]
- Rässler, S. Data Fusion: Identification Problems, Validity, and Multiple Imputation. Aust. J. Stat. 2004, 33, 153–171. [Google Scholar]
- Eurostat. Statistical Matching: A Model Based Approach for Data Integration; Methodologies and Working Papers; Eurostat: Luxembourg, 2013. [Google Scholar]
- Horton, N.J.; Lipsitz, S.R. Multiple Imputation in Practice: Comparison of Software Packages for Regression Models With Missing Variables. Am. Stat. 2001, 55, 244–254. [Google Scholar] [CrossRef]
- Rubin, D.B. Multiple Imputation for Nonresponse in Surveys; John Wiley: New York, NY, USA, 2004. [Google Scholar]
- Su, Y.-S.; Gelman, A.; Hill, J.; Yajima, M. Multiple imputation with diagnostics (mi) in R: Opening windows into the black box. J. Stat. Softw. 2010, 45, 1–31. [Google Scholar] [CrossRef]
- Li, X.; Heckman, N.E. Local linear extrapolation. J. Nonparametr. Stat. 2003, 15, 565–578. [Google Scholar] [CrossRef]
- Antoniadis, A.; Paparoditis, E.; Sapatinas, T. Bandwidth selection for functional time series prediction. Stat. Probab. Lett. 2009, 79, 733–740. [Google Scholar] [CrossRef]
- Tschernig, R.; Yang, L. Nonparametric lag selection for time series. J. Time Ser. Anal. 2000, 21, 457–487. [Google Scholar] [CrossRef]
- Cao-Abad, R.; González-Manteiga, W. Bootstrap methods in regression smoothing. J. Nonparametr. Stat. 1993, 2, 379–388. [Google Scholar] [CrossRef]
- Barbeito, I.; Cao, R.; Sperlich, S. Bandwidth Selection for Nonparametric Kernel Prediction. Unpublished work. 2019. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbeito, I.; Cao, R.; Sperlich, S. Bandwidth Selection for Prediction in Regression. Proceedings 2019, 21, 42. https://doi.org/10.3390/proceedings2019021042
Barbeito I, Cao R, Sperlich S. Bandwidth Selection for Prediction in Regression. Proceedings. 2019; 21(1):42. https://doi.org/10.3390/proceedings2019021042
Chicago/Turabian StyleBarbeito, Inés, Ricardo Cao, and Stefan Sperlich. 2019. "Bandwidth Selection for Prediction in Regression" Proceedings 21, no. 1: 42. https://doi.org/10.3390/proceedings2019021042
APA StyleBarbeito, I., Cao, R., & Sperlich, S. (2019). Bandwidth Selection for Prediction in Regression. Proceedings, 21(1), 42. https://doi.org/10.3390/proceedings2019021042