Use of Multiple Astrocytic Configurations within an Artificial Neuro-Astrocytic Network †
Abstract
:1. Introduction
2. Cooperative Co-Evolutionary Genetic Algorithm to Train Networks
3. Proposal
4. Experiments and Results
Funding
Acknowledgments
References
- Araque, A.; Parpura, V.; Sanzgiri, R.P.; Haydon, P.G. Tripartite synapses: Glia, the unacknowledged partner. Trends Neurosci. 1999, 22.5, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Porto-Pazos, A.B. Modelos Computacionales para Optimizar el Aprendizaje y el Procesamiento de la Información en Sistemas Adaptativos, Redes Neurogliales Artificiales (RR.NG.AA). Ph.D. Thesis, University of A Coruña, A Coruña, Spain, 2004. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Perea, G.; Sur, M.; Araque, A. Neuron-glia networks: integral gear of brain function. Front. Cell. Neurosci. 2014, 8, 378. [Google Scholar] [CrossRef] [PubMed]
- Alvarellos, A.; Pazos, A.; Porto-Pazos, A.B. Computational models of neuron-astrocyte interactions lead to improved efficacy in the performance of neural networks. Comput. Math. Methods Med. 2012, 2012, 476324. [Google Scholar] [CrossRef] [PubMed]
- Cedron, F.; Alvarez-Gonzalez, S.; Pazos, A.; Porto-Pazos, A.B. Modelling Astrocytic Behaviours to improve connectionist systems. In Proceedings of the 18th National Meeting of the Spanish Society of Neuroscience, Santiago De Compostela, Spain, 4–6 September 2019. [Google Scholar]
- Dua, D.; Graff, C. UCI Machine Learning Repository; University of California, School of Information and Computer Science: Irvine, CA, USA, 2019; Available online: http://archive.ics.uci.edu/ml (accessed on 16 July 2019).
- Holland, J. Adaptation in natural and artificial systems: An introductory analysis with application to biology. In Control, and Artificial Intelligence; U Michigan Press: Oxford, UK, 1975; pp. 17–18. [Google Scholar]
- Tan, M.; Eshelman, L.J. Using Weighted Networks to Represent Classification Knowledge in Noisy Domains. In Proceedings of the Fifth International Conference on Machine Learning, Ann Arbor, MI, USA, 12–14 June 1988; p. 121. [Google Scholar]
- Cantu-Paz, E.; Kamath, C. An empirical comparison of combinations of evolutionary algorithms and neural networks for classification problems. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2005, 35, 915–927. [Google Scholar] [CrossRef] [PubMed]
- Wilcoxon, F. Individual Comparisons by Ranking Methods. Biom. Bull. 1945, 1, 80–83. [Google Scholar] [CrossRef]
Architecture | ANN | ANAN | |
---|---|---|---|
Single Astrocityc Configuration | Astrocytic Configuration for Each Layer | ||
1 hidden layer (7) | 90.34% ± 2.34% | 90.75% ± 3.63% | 90.43% ± 3.40% |
2 hidden layers (7,3) | 90.50% ± 2.25% | 91.25% ± 3.88% ** | 91.37% ± 2.96% *** |
3 hidden layers (12,8,3) | 90.78% ± 2.21% | 91.28% ± 4.96% ** | 92.12% ± 4.09% *** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cedron, F.; Alvarez-Gonzalez, S.; Pazos, A.; Porto-Pazos, A.B. Use of Multiple Astrocytic Configurations within an Artificial Neuro-Astrocytic Network. Proceedings 2019, 21, 46. https://doi.org/10.3390/proceedings2019021046
Cedron F, Alvarez-Gonzalez S, Pazos A, Porto-Pazos AB. Use of Multiple Astrocytic Configurations within an Artificial Neuro-Astrocytic Network. Proceedings. 2019; 21(1):46. https://doi.org/10.3390/proceedings2019021046
Chicago/Turabian StyleCedron, Francisco, Sara Alvarez-Gonzalez, Alejandro Pazos, and Ana B. Porto-Pazos. 2019. "Use of Multiple Astrocytic Configurations within an Artificial Neuro-Astrocytic Network" Proceedings 21, no. 1: 46. https://doi.org/10.3390/proceedings2019021046
APA StyleCedron, F., Alvarez-Gonzalez, S., Pazos, A., & Porto-Pazos, A. B. (2019). Use of Multiple Astrocytic Configurations within an Artificial Neuro-Astrocytic Network. Proceedings, 21(1), 46. https://doi.org/10.3390/proceedings2019021046