Designing a Smart Mobile Health System for Ecological Frailty Assessment in Elderly †
Abstract
:1. Introduction
2. The Ecological Approach
2.1. General and Specific Requirements
2.2. Model Definition
3. System Design
3.1. General Description
3.2. Architecture for Frailty Assesment
3.2.1. Mobile/Wearable Functional Microservices
3.2.2. Infrastructure Microservices
3.2.3. Microservices and Apps in the Smartphone
3.2.4. Machine Learning Functional Microservices
3.3. Frailty Risk Notification Example
4. Technical Validation
5. Conclusions and Future Work
Funding
Conflicts of Interest
References
- Carretero, L.; Navarro-Pardo, E.; Cano, A. Progression in healthy ageing: Frailty, cognitive decline and gender in the European Innovation Partnership for Active and Healthy Ageing. Eur. J. Psychiatry 2015, 29, 231–237. [Google Scholar] [CrossRef]
- Xue, Q.-L. The Frailty Syndrome: Definition and Natural History. Clin. Geriatr. Med. 2011, 27, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Toosizadeh, N.; Wendel, C.; Hsu, C.-H.; Zamrini, E.; Mohler, J. Frailty assessment in older adults using upper-extremity function: Index development. BMC Geriatr. 2017, 17, 117. [Google Scholar] [CrossRef] [PubMed]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M146-56. [Google Scholar] [CrossRef]
- Gobbens, R.J.; Luijkx, K.G.; Wijnen-Sponselee, M.T.; Schols, J.M. Toward a conceptual definition of frail community dwelling older people. Nurs. Outlook 2010, 58, 76–86. [Google Scholar] [CrossRef]
- De Vriendt, P.; Gorus, E.; Cornelis, E.; Velghe, A.; Petrovic, M.; Mets, T. The process of decline in advanced activities of daily living: A qualitative explorative study in mild cognitive impairment. Int. Psychogeriatrics 2012, 24, 974–986. [Google Scholar] [CrossRef]
- Cook, D.J.; Augusto, J.C.; Jakkula, V.R. Ambient intelligence: Technologies, applications, and opportunities. Pervasive Mob. Comput. 2009, 5, 277–298. [Google Scholar] [CrossRef]
- Ruiz-Zafra, A.; Noguera, M.; Garrido, J.L.; Benghazi, K.; Cuberos Urbano, G.; Caracuel, A. A Mobile Cloud-supported e-Rehabilitation Platform for Brain-Injured Patients. In Proceedings of the Proceedings of the ICTs for improving Patients Rehabilitation Research Techniques; IEEE, 2013. [Google Scholar]
- Wang Member, F.; Stone Student Member, E.; Skubic Member, M.; Keller Fellow, J.M.; Abbott, C.; Rantz Member, M. Towards a Passive Low-Cost In-Home Gait Assessment System for Older Adults. IEEE J Biomed Heal. Inf. 2013, 17, 346–355. [Google Scholar] [CrossRef]
- Fontecha, J.; Navarro, F.J.; Hervás, R.; Bravo, J. Elderly frailty detection by using accelerometer-enabled smartphones and clinical information records. Pers. Ubiquitous Comput. 2013, 17, 1073–1083. [Google Scholar] [CrossRef]
- González, I.; Fontecha, J.; Hervás, R.; Bravo, J. Estimation of Temporal Gait Events from a Single Accelerometer Through the Scale-Space Filtering Idea. J. Med. Syst. 2016, 40, 251. [Google Scholar] [CrossRef]
- Zhu, L.; Mark Speechley, S. Measuring Community Mobility in Older Adults with Parkinson’s Disease Using A Wearable GPS Sensor And Self-report Assessment Tools Graduate Program in Epidemiology and Biostatistics. 2017. [Google Scholar]
- DeMasi, O.; Feygin, S.; Dembo, A.; Aguilera, A.; Recht, B. Well-Being Tracking via Smartphone-Measured Activity and Sleep: Cohort Study. JMIR mHealth uHealth 2017, 5, e137. [Google Scholar] [CrossRef] [PubMed]
- Do, T.M.T.; Gatica-Perez, D. Human interaction discovery in smartphone proximity networks. Pers. Ubiquitous Comput. 2013, 17, 413–431. [Google Scholar] [CrossRef]
- Schwenk, M.; Mohler, J.; Wendel, C.; D’’Huyvetter, K.; Fain, M.; Taylor-Piliae, R.; Najafi, B. Wearable Sensor-Based In-Home Assessment of Gait, Balance, and Physical Activity for Discrimination of Frailty Status: Baseline Results of the Arizona Frailty Cohort Study. Gerontology 2015, 61, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Esposito, M.; Minutolo, A.; Megna, R.; Forastiere, M.; Magliulo, M.; De Pietro, G. A smart mobile, self-configuring, context-aware architecture for personal health monitoring. Eng. Appl. Artif. Intell. 2018, 67, 136–156. [Google Scholar] [CrossRef]
- Schmidt, M.; Obermaisser, R. Adaptive and technology-independent architecture for fault-tolerant distributed AAL solutions. Comput. Biol. Med. 2018, 95, 236–247. [Google Scholar] [CrossRef] [PubMed]
- Harous, S.; El Menshawy, M.; Serhani, M.A.; Benharref, A. Mobile health architecture for obesity management using sensory and social data. Informatics Med. Unlocked 2018, 10, 27–44. [Google Scholar] [CrossRef]
- Qi, J.; Yang, P.; Min, G.; Amft, O.; Dong, F.; Xu, L. Advanced internet of things for personalised healthcare systems: A survey. Pervasive Mob. Comput. 2017, 41, 132–149. [Google Scholar] [CrossRef]
- Guerrero-Contreras, G.; Navarro-Galindo, J.L.; Samos, J.; Garrido, J.L. A Collaborative Semantic Annotation System in Health: Towards a SOA Design for Knowledge Sharing in Ambient Intelligence. Mob. Inf. Syst. 2017, 2017. [Google Scholar] [CrossRef]
- Lu, D.; Huang, D.; Walenstein, A.; Medhi, D. A Secure Microservice Framework for IoT. In Proceedings of the 2017 IEEE Symposium on Service-Oriented System Engineering (SOSE), San Francisco, CA, USA, 6–9 April 2017; pp. 9–18. [Google Scholar]
- Pérez Mármol, J.M.; Flores Antigüedad, M.L.; Castro Sánchez, A.M.; Tapia Haro, R.M.; García Ríos, M.d.C.; Aguilar Ferrándiz, M.E. Inpatient dependency in activities of daily living predicts informal caregiver strain: A cross-sectional study. J. Clin. Nurs. 2018, 27, e177–e185. [Google Scholar] [CrossRef]
- Richards, M. Microservices vs. Service-Oriented Architecture; O’Reilly Media: Sebastopol, CA, USA, 2016; ISBN 978-1-491-95242-9. [Google Scholar]
- Newman, S. Building Microservices, 1st ed.; Loukides, M., MacDonald, B., Eds.; O’Reilly Media: Sebastopol, CA, USA, 2015; Volume 52, ISBN 978-1-491-95035-7. [Google Scholar]
- Folstein, M.F.; Folstein, S.E.; Mchugh, P.R. “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Alshehri, F.; Freeman, M. Methods of Usability Evaluations of Mobile Devices; Deakin University: Geelong, 2012. [Google Scholar]
- Ehmen, H.; Haesner, M.; Steinke, I.; Dorn, M.; Gövercin, M.; Steinhagen-Thiessen, E. Comparison of four different mobile devices for measuring heart rate and ECG with respect to aspects of usability and acceptance by older people. Appl. Ergon. 2012, 43, 582–587. [Google Scholar] [CrossRef] [PubMed]
Category | Variable Names | Instrument |
---|---|---|
Sociodemographic | ||
Age | Self-report | |
Sex | Self-report | |
Frailty | ||
Frailty Status (non-frail, pre-frail, frail) | Fried Phenotype | |
Wearable Sensor | ||
Sensor value | Heart rate, Step Counter and Light sensors | |
axis values | Accelerometer, Gyroscope, Linear acceleration and Gravity sensors | |
axes values | Accelerometer, Gyroscope, Linear acceleration and Gravity sensors | |
vector | Accelerometer, Gyroscope, Linear acceleration and Gravity sensors | |
Amplitude | Heart rate, Step Counter, Light sensors, Accelerometer, Gyroscope, Linear acceleration and Gravity sensors |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Moreno, F.M.; Rodríguez-García, E.; Rodríguez-Fórtiz, M.J.; Garrido, J.L.; Bermúdez-Edo, M.; Villaverde-Gutiérrez, C.; Pérez-Mármol, J.M. Designing a Smart Mobile Health System for Ecological Frailty Assessment in Elderly. Proceedings 2019, 31, 41. https://doi.org/10.3390/proceedings2019031041
García-Moreno FM, Rodríguez-García E, Rodríguez-Fórtiz MJ, Garrido JL, Bermúdez-Edo M, Villaverde-Gutiérrez C, Pérez-Mármol JM. Designing a Smart Mobile Health System for Ecological Frailty Assessment in Elderly. Proceedings. 2019; 31(1):41. https://doi.org/10.3390/proceedings2019031041
Chicago/Turabian StyleGarcía-Moreno, Francisco M., Estefanía Rodríguez-García, María José Rodríguez-Fórtiz, José Luis Garrido, María Bermúdez-Edo, Carmen Villaverde-Gutiérrez, and José Manuel Pérez-Mármol. 2019. "Designing a Smart Mobile Health System for Ecological Frailty Assessment in Elderly" Proceedings 31, no. 1: 41. https://doi.org/10.3390/proceedings2019031041
APA StyleGarcía-Moreno, F. M., Rodríguez-García, E., Rodríguez-Fórtiz, M. J., Garrido, J. L., Bermúdez-Edo, M., Villaverde-Gutiérrez, C., & Pérez-Mármol, J. M. (2019). Designing a Smart Mobile Health System for Ecological Frailty Assessment in Elderly. Proceedings, 31(1), 41. https://doi.org/10.3390/proceedings2019031041