Graphene-Coated Sensor Yarn for Composite Preforms †
Funding
Acknowledgments
Conflicts of Interest
References
- Park, S.; Mackenzie, K.; Jayaraman, S. Framework for Personalized Mobile Information Processing (PMIP). In Proceedings of the 2002 Design Automation Conference (IEEE Cat. No.02CH37324), New Orleans, LA, USA, 10–14 June 2002; pp. 10–14. [Google Scholar]
- Meoli, D.; May-Plumlee, T. Interactive electronic textile development: A review of technologies. Technol. Manag. 2012, 2, 1–12. [Google Scholar]
- Post, E.R.; Orth, M.; Russo, R.R.; Gershenfeld, N. E-broidery: Design and fabrication of textile-based computing. IBM Syst. J. 2000, 39, 840–860. [Google Scholar] [CrossRef]
- Cottet, D.; Grzyb, J.; Kirstein, T.; Tröster, G. Electrical characterization of textile transmission lines. IEEE Trans. Adv. Packag. 2003, 26, 182–190. [Google Scholar] [CrossRef]
- Orth, M. Defining Flexibility and Sewability in Conductive Yarns. MRS Proc. 2002, 736, D1.4. [Google Scholar] [CrossRef]
- Hasan, B.M.M.; Cherif, C.; Matthes, A. Early prediction of the failure of textile-reinforced thermoplastic composites using hybrid yarns. Compos. Sci. Technol. 2012, 72, 1214–1221. [Google Scholar] [CrossRef]
- Roscher, K.U.; Fischer, W.-J.; Landgraf, J.; Pfeifer, G.; Starke, E. Sensor Networks for Integration into Textile-Reinforced Composites. In Proceedings of the 14th International Conference on Solid-State Sensors, Actuators and Microsystems, Lyon, France, 10–14 June 2007; pp. 1589–1592. [Google Scholar]
- Staab, G.H. Introduction to Composite Materials. In Laminar Composites; Staab, G.H., Ed.; Butter Worth Heinemann (Member of Elsevier Group): Oxford, UK, 1999; First Edition; pp. 1–16. ISBN 978-0-7506-7124-8. [Google Scholar]
- Strong, A.B. Damage prevention and repair. In Fundamentals of Composites Manufacturing—Materials, Methods, and Applications; Society of Manufacturing Engineers (SME): Dearborn, MI, USA, 2008; pp. 481–504. [Google Scholar]
- Diamanti, K.; Soutis, C. Structural health monitoring techniques for aircraft composite structures. Prog. Aerosp. Sci. 2010, 46, 342–352. [Google Scholar] [CrossRef]
- Galao, O.; Baeza, F.J.; Zornoza, E.; Garcés, P. Strain and damage sensing properties on multifunctional cement composites with CNF admixture. Cem. Concr. Compos. 2014, 46, 90–98. [Google Scholar] [CrossRef]
- Johnson, M.T.; Fullwood, D.T.; Hansen, G. Strain monitoring of carbon fiber composite via embedded nickel nano-particles. Compos. Part B Eng. 2012, 43, 1155–1163. [Google Scholar] [CrossRef]
- Chiacchiarelli, L.M.; Rallini, M.; Monti, M.; Puglia, D.; Kenny, J.M.; Torre, L. The role of irreversible and reversible phenomena in the piezoresistive behavior of graphene epoxy nanocomposites applied to structural health monitoring. Compos. Sci. Technol. 2013, 80, 73–79. [Google Scholar] [CrossRef]
- Nanni, F.; Ruscito, G.; Puglia, D.; Terenzi, A.; Kenny, J.M.; Gusmano, G. Effect of carbon black nanoparticle intrinsic properties on the self-monitoring performance of glass fibre reinforced composite rods. Compos. Sci. Technol. 2011, 71, 1–8. [Google Scholar] [CrossRef]
- Nauman, S.; Lapreyonnie, P.; Cristian, I.; Boussu, F.; Koncar, V. In Situ Strain Sensing in Three Dimensional Woven Preform Based Composites Using Flexible Textile Based Sensors. In Proceedings of the 10th International Conference on Textile Composites, Lille, France, 26–28 October 2010; Binetruy, C., Boussa, F., Eds.; DEStech Publicaions: Lancaster, PA, USA, 2010; p. 363. [Google Scholar]
- Zhao, H.; Zhang, Y.; Bradford, P.D.; Zhou, Q.; Jia, Q.; Yuan, F.-G.; Zhu, Y. Carbon nanotube yarn strain sensors. Nanotechnology 2010, 21, 305502. [Google Scholar] [CrossRef] [PubMed]
- Rausch, J.; Mader, E. Health monitoring in continuous glass fibre reinforced thermoplastics: Manufacturing and application of interphase sensors based on carbon nanotubes. Compos. Sci. Technol. 2010, 70, 1589–1596. [Google Scholar] [CrossRef]
- Nasir, M.A.; et al. Smart sensing layer for the detection of damage due to defects in a laminated composite structure. Journal of Intelligent Material Systems and Structures 2014. [Google Scholar] [CrossRef]
- Mouritz, A.P.; Bannister, M.K.; Falzon, P.J.; Leong, K.H. Review of applications for advanced three-dimensional fibre textile composites. Compos. Part A Appl. Sci. Manuf. 1999, 30, 1445–1461. [Google Scholar] [CrossRef]
- Hufenbach, W.; Adam, F.; Fischer, W.J.; Kunadt, A.; Weck, D. Mechanical behaviour of textile-reinforced thermoplastics with integrated sensor network components. Mater. Des. 2011, 32, 4931–4935. [Google Scholar] [CrossRef]
- Masmoudi, S.; El-Mahi, A.; El-Guerjouma, R. Structural Integrity of Laminated Composite with Embedded Piezoelectric Sensors. In Design and Modeling of Mechanical Systems—II; Chouchane, M., Fakhfakh, T., Daly, H., Aifaoui, N., Chaari, F., Eds.; Springer: Cham, Switzerland, 2015; pp. 673–680. [Google Scholar]
- Konka, P.H.; Wahab, M.; Lian, K. The effects of embedded piezoelectric fiber composite sensors on the structural integrity of glass-fiber–epoxy composite laminate. Smart Mater. Struct. 2012, 21, 015016. [Google Scholar] [CrossRef]
- Berzowska, J. Electronic Textiles: Wearable Computers, Reactive Fashion, and Soft Computation. Textile 2005, 3, 58–75. [Google Scholar] [CrossRef]
- Alagirusamy, R.; Eichhoff, J.; Gries, T.; Jockenhoevel, S. Coating of conductive yarns for electro-textile applications. J. Text. Inst. 2013, 104, 270–277. [Google Scholar] [CrossRef]
- Shieldex® Produced by Statex. Conductive Yarns/Threads. Available online: http://www.shieldextrading.net/products/yarns-threads/ (accessed on 13 January 2020).
- Taniselass, S.; Arshad, M.K.M.; Gopinath, S.C.B. Graphene-based electrochemical biosensors for monitoring noncommunicable disease biomarkers. Biosens. Bioelectron. 2019. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernando, A.; Ali, S.; Tan, S.; He, G. Graphene-Coated Sensor Yarn for Composite Preforms. Proceedings 2019, 32, 21. https://doi.org/10.3390/proceedings2019032021
Fernando A, Ali S, Tan S, He G. Graphene-Coated Sensor Yarn for Composite Preforms. Proceedings. 2019; 32(1):21. https://doi.org/10.3390/proceedings2019032021
Chicago/Turabian StyleFernando, Anura, Sammia Ali, Sirui Tan, and Guanliang He. 2019. "Graphene-Coated Sensor Yarn for Composite Preforms" Proceedings 32, no. 1: 21. https://doi.org/10.3390/proceedings2019032021
APA StyleFernando, A., Ali, S., Tan, S., & He, G. (2019). Graphene-Coated Sensor Yarn for Composite Preforms. Proceedings, 32(1), 21. https://doi.org/10.3390/proceedings2019032021