Water Leak Detection by Termographic Image Analysis, In Laboratory Tests †
Abstract
:1. Introduction
2. Results Processing Images
3. Discussion
Thermography as a Non-Destructive Test (NDT)
4. Materials and Methods
4.1. Laboratory Model (Case of Study)
4.2. Quality Image Taken and Its Variables for Leak Analysis Detection
4.3. Image Processing
5. Conclusions
Abbreviations
NDT | Non-Destructive Test |
WDS | Water Distribution Systems |
IR | Infrared |
QIT | Quantitative Infrared Thermography |
END | Evaluation No Destructive |
NETD | Noise Equivalent Temperature Difference |
Appendix A. Test ID: Mr-4
Appendix B. Test ID: Mrf-2
References
- Termograf, E.E.N.; Revillas, S.M.; Energ, G.; Ii, N. La Termografía Infrarroja y el deporte de alto rendimiento; Military Institute of Armament Technology: Zielonka, Poland, 2012. [Google Scholar]
- Santulli, C.; La, R. IR Thermography for the Detection of Buried Objects: A Short Review 1. Introduction Studied. A Large Number of Scientific Papers are Available, a List of which, Including Considerations Application-Related Factors, in Particular the State of Environ; Università di Roma: Roma, Italy, 2003. [Google Scholar]
- Shepard, S.M.; Wang, D.; Lhota, J.R.; Ahmed, T.; Rubadeux, B.A. Parallel processing and analysis of thermographic data. Rev. Quant. Nondestr. Eval. 2002, 21, 558–563. [Google Scholar]
- Carreño-Alvarado, E.P.; Ayala-Cabrera, D.; Pérez-García, R.; Izquierdo, J. Identification of buried pipes using thermal images and data mining. In Proceedings of the 16th Conference on Water Distribution System Analysis, Bari, Italy, 14–17 July 2014. [Google Scholar]
- Dudić, S.; Ignjatović, I.; Šešlija, D.; Blagojević, V.; Stojiljković, M. Leakage quantification of compressed air using ultrasound and infrared thermography. Measurement 2012, 45, 1689–1694. [Google Scholar] [CrossRef]
- Mollmann, M.; Vollmer, K. Infrared Thermal Imaging: Fundamentals, Research and Applications; Wiley: Hoboken, NJ, USA, 2014; Volume 1. [Google Scholar]
- Holst, G.C. Common Sense Approach to Thermal Imaging; SPIE Optical Engineering Press: Bellingham, WA, USA, 2000. [Google Scholar]
- Yin, Z.; Collins, R. Augmented Vision Perception in Infrared; Springer: Berlin, Germany, 2009. [Google Scholar]
- Balageas, D.L. Termografía Infrarroja: Una Técnica Multifacética para la Evaluación No Destructiva (END); ONERA (The French Aerospace Lab): Châtillon, France, 2007. [Google Scholar]
- Izquierdo, J.; López, P.A.; Martínez, F.J.; Pérez, R. Fault detection in water supply systems using hybrid (theory and data-driven) modelling. Math. Comput. Model. 2007, 46, 341–350. [Google Scholar] [CrossRef]
- Swiderski, W.; Hlosta, P.; Miszczak, M. IR Thermography methods in detection of buried mines. Proc. SPIE Int. Soc. Opt. Eng. 2012. [Google Scholar] [CrossRef]
- Carreño-Alvarado, E.P.; Ayala-Cabrera, D.; Pérez-García, R.; Izquierdo, J. Identificación de tuberías enterradas mediante termografía. In Proceedings of the XXV Congreso Latinoamericano de Hidráulica, Santiago, Chile, 25–29 August 2014. [Google Scholar]
- UPV Data. Available online: http://dataupv.webs.upv.es/datos-historicos-de-la-observacion-meteorologica-en-valencia/ (accessed on 11 March 2017).
- Atef, A.; Zayed, T.; Hawari, A.; Khader, M.; Moselhi, O. Multi-tier method using infrared photography and GPR to detect and locate water leaks. Autom. Constr. 2016, 61, 162–170. [Google Scholar] [CrossRef]
- Metola, D.R.; Martínez, F.; Valencia, A. Departamento de Ingeniería Hidráulica y Medio Ambiente; Universitat Politècnica de València: Valencia, Spain, 2009. [Google Scholar]
- Astarita, T.; Carlomango, G.M. Infrared Thermography for Thermo-Fluid-Dynamics; Springer: Berlin, Germany, 2015; Volume 1. [Google Scholar]
- Minkina, W.; Dudzik, S. Infrared Thermography, Errors and Uncertainties; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Živčák, J.; Hudák, R.; Madarász, L.; Rudas, I.J. Methodology, Models and Algorithms in Thermographic Diagnostics; Springer: Berlin, Germany, 2013; Volume 5. [Google Scholar]
ID | Images Taken | Date (day/month/year) | Study Place | Objective |
---|---|---|---|---|
T-1 | 18 | 15/10/2013 | Different places in the UPV | Camera control |
St-3 | 59 | 01/10/2014 a 17/02/2014 | Site 3 previously chosen | Identify buried structure |
St-4 | 52 | 10/01/2014 | Site 4 previously chosen | Identify buried structure |
St-2 | 672 | 18/10/2013 a 17/02/2014 | Site 2 previously chosen | Identify buried structure |
Exp-1 | 8 | 17/01/2014 | Esplanade UPV | Identify buried structure |
Mg-1 | 24 | 02/07/2015 | Laboratory model: Gravity pipe | Identify buried structure |
Mp-1 | 24 | 16/07/2015 | Laboratory model: Buried thermic objects | Determinate the buried colocation distance |
Mgf-1 | 98 | 07/10/2015 | Laboratory model: Gravity pipe with leak | Identify buried structure and leak |
Mgf-2 | 10 | 08/10/2015 | Laboratory model: Gravity pipe day after | Identify buried structure and leak |
Mr-1 | 51 | 13/06/2016 | Laboratory model: Recirculating pipe, cover surface | Variable study |
Mr-2 | 39 | 30/06/2016 | Laboratory model: Recirculating pipe | Visualize behavior |
Mr-3 | 83 | 03/08/2016 | Laboratory model: Recirculating pipe, thermic contrast | Variable study |
Mr-4 | 25 | 04/08/2016 | Laboratory model: Recirculating pipe | Visualize behavior |
Mr-4 | 60 | 16/08/2016 | Laboratory model: Recirculating pipe, thermic contrast | Visualize behavior |
Mrf-1 | 15 | 23/09/2016 | Laboratory model: Recirculating pipe with leak | Identify buried structure and leak |
Mrf-2 | 15 | 10/09/2016 | Laboratory model: Recirculating pipe with leak | Identify buried structure and leak |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pauline, E.; Carreño-Alvarado; Meza, G.R. Water Leak Detection by Termographic Image Analysis, In Laboratory Tests. Proceedings 2020, 48, 15. https://doi.org/10.3390/ECWS-4-06440
Pauline E, Carreño-Alvarado, Meza GR. Water Leak Detection by Termographic Image Analysis, In Laboratory Tests. Proceedings. 2020; 48(1):15. https://doi.org/10.3390/ECWS-4-06440
Chicago/Turabian StylePauline, Elizabeth, Carreño-Alvarado, and Gilberto Reynoso Meza. 2020. "Water Leak Detection by Termographic Image Analysis, In Laboratory Tests" Proceedings 48, no. 1: 15. https://doi.org/10.3390/ECWS-4-06440
APA StylePauline, E., Carreño-Alvarado, & Meza, G. R. (2020). Water Leak Detection by Termographic Image Analysis, In Laboratory Tests. Proceedings, 48(1), 15. https://doi.org/10.3390/ECWS-4-06440