Key Determinants of Continuance Usage Intention: An Empirical Study of Mobile Food Delivery Apps among Malaysians †
Abstract
:1. Introduction
2. Literature and Hypothesis
2.1. Performance Expectancy
2.2. Effort Expectancy
2.3. Social Influence
2.4. Facilitating Condition
2.5. Hedonic Motivation
2.6. Price Value
2.7. Habit
2.8. Time Saving
2.9. Convenience
3. Research Method
4. Result
4.1. Respondents’ Profile
4.2. Common Method Bias
4.3. Measurement Model
4.4. Structural Model
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adroit Market Research. Available online: https://www.adroitmarketresearch.com/industry-reports/malaysia-online-food-delivery-market (accessed on 2 February 2022).
- Shah, A.; Yan, X.; Quayyum, A. Adoption of mobile food ordering apps for O2O food delivery services during the COVID-19 outbreak. Br. Food J. 2021, 28. ahead-of-print. [Google Scholar] [CrossRef]
- Okumus, B.; Ali, F.; Bilgihan, A.; Ozturk, A. Psychological factors influencing customers acceptance of smartphone diet apps when ordering food at restaurants. Int. J. Hosp. Manag. 2018, 72, 67–77. [Google Scholar] [CrossRef]
- Ariel, M. App Stores Growth Acceleratesin 2014. Available online: https://www.developernation.net/blog/app-stores-growth-accelerates-2014 (accessed on 2 February 2022).
- Venkatesh, V.; Thong, J.Y.; Xu, X. Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Q. 2012, 36, 157–178. [Google Scholar] [CrossRef]
- Zhao, Y.; Bacao, F. What factors determining customer continuingly using food delivery apps during 2019 novel coronavirus pandemic period? Int. J. Hosp. Manag. 2020, 92, 102683. [Google Scholar] [CrossRef] [PubMed]
- Gunden, N.; Morosan, C.; DeFranco, A. Consumers’ intentions to use online food delivery systems in the USA. Int. J. Contemp. Hosp. Manag. 2020, 32, 1325–1345. [Google Scholar] [CrossRef]
- Alalwan, A. Mobile food ordering apps: An empirical study of the factors affecting customer e-satisfaction and continued intention to reuse. Int. J. Inf. Manag. 2020, 50, 28–44. [Google Scholar] [CrossRef]
- Tam, C.; Santos, D.; Oliveira, T. Exploring the influential factors of continuance intention to use mobile apps: Extending the expectation confirmation model. Inf. Syst. Front. 2020, 22, 243–257. [Google Scholar] [CrossRef]
- Ray, A.; Dhir, A.; Bala, P.; Kaur, P. Why do people use food delivery apps (FDA)? A use of gratification theory perspective. J. Retail. Consum. Serv. 2019, 51, 221–230. [Google Scholar] [CrossRef]
- Fakfare, P. Influence of service Attributes of food delivery application on customers satisfaction and their behavioural responses: The IPMA. Int. J. Gastron. Food Sci. 2021, 25, 100392. [Google Scholar] [CrossRef]
- Surya, A.; Sukresna, I.; Mardiyona, A. Fctors affecting intention to use food order-delivery feature of ride-hailing applications: The UTAUT approach. Int. J. Bus. Soc. 2021, 22, 1363–1383. [Google Scholar] [CrossRef]
- Agarwal, V.; Sahu, R. Predicting repeat usage intention towards O2O food delivery: Extending UTAUT2 with user gratifications and bandwagoning. J. Foodserv. Bus. Res. 2022, 25, 434–474. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. MIS Q. 2013, 27, 425–478. [Google Scholar] [CrossRef]
- Marinković, V.; Đorđević, A.; Kalinić, Z. The moderating effects of gender on customer satisfaction and continuance intention in mobile commerce: A UTAUT-based perspective. Technol. Anal. Strateg. Manag. 2019, 32, 306–318. [Google Scholar] [CrossRef]
- Lee, S.W.; Sung, H.J.; Jeon, H.M. Determinants of continuous intention on food delivery apps: Extending UTAUT2 with information Quality. Sustainability 2019, 11, 3141. [Google Scholar] [CrossRef]
- Chao, C.M. Factors Determining the Behavioral Intention to Use Mobile Learning: An Application and Extension of the UTAUT Model. Front. Psychol. 2019, 10, 1652. [Google Scholar] [CrossRef]
- Al-Saedi, K.; Al-Emran, M.; Ramayah, T.; Abusham, E. Developing a general extended UTAUT model for M-payment adoption. Technol. Soc. 2020, 6, 101293. [Google Scholar] [CrossRef]
- Akdim, K.; Casalo, L.V.; Flavian, C. The role of utilitarian and hedonic aspects in the continuance intention to use social mobile apps. J. Retail. Consum. Serv. 2022, 66, 102888. [Google Scholar] [CrossRef]
- Dodds, W.B.; Monroe, K.B.; Grewal, D. Effects of price, brand, and store information on buyers. J. Mark. Res. 1991, 28, 307–319. [Google Scholar]
- Limayem, M.; Hirt, S.G.; Cheung, M.K. How Habit Limits the Predictive Power of Intention: The Case of Information Systems Continuance. MIS Q. 2007, 31, 705–737. [Google Scholar] [CrossRef]
- Nascimento, B.; Oliveira, T.; Tam, C. Wearable technology: What explains continuance intention in smartwatches? J. Retail. Consum. Serv. 2018, 43, 157–169. [Google Scholar] [CrossRef]
- Hsu, M.-H.; Chang, C.M.; Chuang, L.W. Understanding the determinants of online repeat purchase intention and moderating role of habit: The case of online group-buying in Taiwan. Int. J. Inf. Manag. 2015, 35, 45–56. [Google Scholar] [CrossRef]
- Zanetta, L.D.A.; Hakim, M.P.; Gastaldi, G.B.; Seabra, L.M.A.J.; Rolim, P.M.; Nascimento, L.G.P.; Medeiros, C.O.; Cunha, D.T.D. The use of food delivery apps during the COVID-19 pandemic in Brazil: The role of solidarity, perceived risk, and regional aspects. Food Res. Int. 2021, 149, 110671. [Google Scholar] [CrossRef] [PubMed]
- Yeo, V.; Goh, S.K.; Rezaei, S. Consumer experiences, attitude and behavioral intention toward online food delivery (OFD) services. J. Retail. Consum. Serv. 2017, 35, 150–162. [Google Scholar] [CrossRef]
- Xu, F.; Huang, S.; Li, S. Time, money, or convenience: What determines Chinese consumers’ continuance usage intention and behavior of using tourism mobile apps? Int. J. Cult. Tour. Hosp. Res. 2019, 13, 299–322. [Google Scholar] [CrossRef]
- Ozturk, A.B.; Nusair, K.; Okumus, F.; Hua, N. The role of utilitarian and hedonic values on users’ continued usage intention in a mobile hotel booking environment. Int. J. Hosp. Manag. 2016, 57, 106–115. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef]
- Ringle, C.M.; Smith, W.R.; Becker, J. SmartPLS 3; SmartPLS GmbH: Boennigstedt, Germany, January 2015. [Google Scholar]
- Tehseen, S.; Ramayah, T.; Sajilan, S. Testing and Controlling for Common Method Variance: A Review of Available Methods. J. Manag. Sci. 2017, 4, 142–168. [Google Scholar] [CrossRef]
- MacKenzie, S.B.; Podsakoff, P.M. Common Method Bias: Nature, Causes, and Procedural Remedies. J. Retail. 2012, 88, 556–562. [Google Scholar] [CrossRef]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.-Y.; Podsakoff, N.P. Common Method Biases in Behavioral Research: A Critical Review of the Literature and Recommended Remedies. J. Appl. Psychol. 2003, 88, 879–903. [Google Scholar] [CrossRef]
- Oreg, S. Resistance to change: Developing an individual differences measure. J. Appl. Psychol. 2003, 88, 680–693. [Google Scholar] [CrossRef] [Green Version]
- Byrne, B.M. Structural Equation Modeling with AMOS: Basic Concepts, Appsand Programming, 3rd ed.; Routledge: New York, NY, USA, 2016. [Google Scholar]
- Hair, J.; Hult, G.T.; Ringle, C.; Sarstedt, M. A Primer On Partial Least Squares Structural Equation Modeling (PLS-SEM), 2nd ed.; SAGE Publications: Thousand Oaks, CA, USA, 2017. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioural Science, 2nd ed.; Lawrance Elrbaum: Mahwah, NJ, USA, 1988. [Google Scholar]
Authors | Variables |
---|---|
Alalwan [8] | Performance expectancy, effort expectancy, social influences, facilitating conditions, hedonic motivation, price value, habit, online review, continued intention, online rating online tracking, and satisfaction |
Gunden et al. [7] | Performance expectancy, congruity with self-image, habit, impulse buying tendency, mindfulness, and intention |
Tam, Santos, and Oliveira [9] | Social influence, performance expectancy, effort expectancy, perceived fear, facilitating conditions, and continuous intention |
Zhao and Bacao [6] | Performance expectancy, effort expectance, social influence, trust, perceived task–technology fit, confirmation, satisfaction, continuance intention |
Surya, Sukresna, and Mardiyano [12] | Performance expectancy, effort expectancy, social influence, facilitating condition, behavioural intention |
Agarwal and Sahu [13] | Delivery Experience, time saving orientation, societal pressure, search for restaurants, listing, performance expectancy, effort expectancy, facilitating conditions, price saving orientation, hedonic motivations, habit, e-satisfaction, usage intention, and repeat use intention bandwagon effect |
Construct | Items | Loadings | CR | AVE |
---|---|---|---|---|
Continuance Intention | CIN1 | 0.786 | 0.754 | 0.507 |
CIN2 | 0.622 | |||
CIN3 | 0.719 | |||
Convenience | CON1 | 0.779 | 0.819 | 0.602 |
CON2 | 0.737 | |||
CON3 | 0.809 | |||
Effort Expectancy | EEY1 | 0.676 | 0.811 | 0.519 |
EEY2 | 0.697 | |||
EEY3 | 0.722 | |||
EEY4 | 0.782 | |||
Facilitating Conditions | FCO1 | 0.762 | 0.766 | 0.522 |
FCO2 | 0.698 | |||
FCO3 | 0.705 | |||
Habit | HBT2 | 0.754 | 0.768 | 0.525 |
HBT3 | 0.685 | |||
HBT4 | 0.734 | |||
Hedonic Motivation | HMN1 | 0.749 | 0.780 | 0.542 |
HMN2 | 0.746 | |||
HMN3 | 0.714 | |||
Performance Expectancy | PEY1 | 0.759 | 0.796 | 0.567 |
PEY2 | 0.800 | |||
PEY4 | 0.696 | |||
Price Value | PVE1 | 0.714 | 0.784 | 0.548 |
PVE2 | 0.722 | |||
PVE3 | 0.783 | |||
Social Influence | SIF1 | 0.714 | 0.758 | 0.511 |
SIF2 | 0.698 | |||
SI3 | 0.732 | |||
Time Saving | TS1 | 0.773 | 0.851 | 0.588 |
TS2 | 0.793 | |||
TS3 | 0.717 | |||
TS4 | 0.781 |
CIN | CON | EEY | FCO | HBT | HMN | PEY | PVE | SIF | TSG | |
---|---|---|---|---|---|---|---|---|---|---|
CIN | 0.712 | |||||||||
CON | 0.528 | 0.776 | ||||||||
EEY | 0.474 | 0.460 | 0.720 | |||||||
FCO | 0.471 | 0.464 | 0.562 | 0.722 | ||||||
HBT | 0.522 | 0.394 | 0.417 | 0.493 | 0.725 | |||||
HMN | 0.492 | 0.437 | 0.482 | 0.480 | 0.518 | 0.736 | ||||
PEY | 0.447 | 0.392 | 0.671 | 0.503 | 0.472 | 0.412 | 0.753 | |||
PVE | 0.513 | 0.440 | 0.487 | 0.482 | 0.558 | 0.463 | 0.400 | 0.740 | ||
SIF | 0.476 | 0.400 | 0.436 | 0.450 | 0.502 | 0.427 | 0.445 | 0.421 | 0.715 | |
TSG | 0.554 | 0.732 | 0.542 | 0.506 | 0.441 | 0.450 | 0.491 | 0.414 | 0.416 | 0.767 |
Std. Beta | Std. Error | T-Value | p Values | Decision | LL | UL | f2 | VIF | R2 | Q2 | |
---|---|---|---|---|---|---|---|---|---|---|---|
H1: PEY->CIN | 0.045 | 0.067 | 0.671 | 0.251 | Not supported | −0.071 | 0.15 | 0.002 | 2.068 | 0.481 | 0.222 |
H2: EEY->CIN | 0.032 | 0.067 | 0.476 | 0.317 | Not supported | −0.078 | 0.144 | 0.001 | 2.354 | ||
H3: SIF->CIN | 0.119 | 0.06 | 1.995 | 0.023 | Supported | 0.031 | 0.222 | 0.017 | 1.568 | ||
H4: FCO->CIN | 0.028 | 0.067 | 0.426 | 0.335 | Not supported | −0.075 | 0.138 | 0.001 | 1.849 | ||
H5: HMN->CIN | 0.111 | 0.056 | 1.983 | 0.024 | Supported | 0.025 | 0.21 | 0.014 | 1.676 | ||
H6: PVE->CIN | 0.153 | 0.058 | 2.619 | 0.005 | Supported | 0.054 | 0.247 | 0.026 | 1.759 | ||
H7: HBT->CIN | 0.140 | 0.062 | 2.27 | 0.012 | Supported | 0.027 | 0.232 | 0.020 | 1.932 | ||
H8: TSG->CIN | 0.177 | 0.066 | 2.662 | 0.004 | Supported | 0.066 | 0.281 | 0.023 | 2.577 | ||
H9: CON->CIN | 0.135 | 0.068 | 1.968 | 0.025 | Supported | 0.023 | 0.248 | 0.015 | 2.325 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yapp, E.H.T.; Kataraian, S. Key Determinants of Continuance Usage Intention: An Empirical Study of Mobile Food Delivery Apps among Malaysians. Proceedings 2022, 82, 15. https://doi.org/10.3390/proceedings2022082015
Yapp EHT, Kataraian S. Key Determinants of Continuance Usage Intention: An Empirical Study of Mobile Food Delivery Apps among Malaysians. Proceedings. 2022; 82(1):15. https://doi.org/10.3390/proceedings2022082015
Chicago/Turabian StyleYapp, Emily H. T., and Saraniya Kataraian. 2022. "Key Determinants of Continuance Usage Intention: An Empirical Study of Mobile Food Delivery Apps among Malaysians" Proceedings 82, no. 1: 15. https://doi.org/10.3390/proceedings2022082015
APA StyleYapp, E. H. T., & Kataraian, S. (2022). Key Determinants of Continuance Usage Intention: An Empirical Study of Mobile Food Delivery Apps among Malaysians. Proceedings, 82(1), 15. https://doi.org/10.3390/proceedings2022082015