Additive Manufacturing Electronics for Packaging High-Frequency Aluminum Nitride Piezoelectric Micromachined Ultrasonic Transducer Probes †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Atheeth, S.; Krishnan, K.; Arora, M. Review of pMUTs for medical imaging: Towards high frequency arrays. Biomed. Phys. Eng. Express 2023, 9, 022001. [Google Scholar]
- Brenner, K.; Ergun, A.S.; Firouzi, K.; Rasmussen, M.F.; Stedman, Q.; Khuri–Yakub, B. Advances in Capacitive Micromachined Ultrasonic Transducers. Micromachines 2019, 10, 152. [Google Scholar] [CrossRef] [PubMed]
- Gerardo, C.D.; Cretu, E.; Rohling, R. Fabrication and testing of polymer-based capacitive micromachined ultrasound transducers for medical imaging. Microsyst. Nanoeng. 2018, 4, 19. [Google Scholar] [CrossRef] [PubMed]
- Pala, S.; Lin, L. Piezoelectric Micromachined Ultrasonic Transducers (pMUT) with Free Boundary. In Proceedings of the 2020 IEEE International Ultrasonics Symposium (IUS), Las Vegas, NV, USA, 7–11 September 2020; pp. 1–4. [Google Scholar]
- Qiu, Y.; Gigliotti, J.V.; Wallace, M.; Griggio, F.; Demore, C.E.M.; Cochran, S.; Trolier-McKinstry, S. Piezoelectric Micromachined Ultrasound Transducer (PMUT) Arrays for Integrated Sensing, Actuation and Imaging. Sensors 2015, 15, 8020–8041. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Dangi, A.; Kim, J.N.; Kothapalli, S.-R.; Choi, K.; Trolier-McKinstry, S.; Jackson, T. Flexible Thin-Film PZT Ultrasonic Transducers on Polyimide Substrates. Sensors 2021, 21, 1014. [Google Scholar] [CrossRef] [PubMed]
- Savoia, A.S.; Casavola, M.; Boni, E.; Ferrera, M.; Prelini, C.; Tortoli, P.; Giusti, D.; Quaglia, F. Design, Fabrication, Characterization, and System Integration of a 1-D PMUT Array for Medical Ultrasound Imaging. In Proceedings of the 2021 IEEE International Ultrasonics Symposium (IUS), Xi’an, China, 11–16 September 2021; pp. 1–3. [Google Scholar]
- Mastronardi, V.M.; Guido, F.; Amato, M.; De Vittorio, M.; Petroni, S. Piezoelectric ultrasonic transducer based on flexible AlN. Microelectron. Eng. 2014, 121, 59–63. [Google Scholar] [CrossRef]
- Hemmelgarn, F.; Ehlert, P.; Mager, T.; Jürgenhake, C.; Dumitrescu, R.; Springer, A. Evaluation of different additive manufacturing technologies for MIDs in the context of smart sensor systems for retrofit applications. In Proceedings of the 2021 14th International Congress Molded Interconnect Devices (MID), Amberg, Germany, 8–11 February 2021; pp. 1–8. [Google Scholar]
- Aspar, G.; Goubault, B.; Lebaigue, Q.; Souriau, C.; Simon, G.; Di Cioccio, L.; Brechet, Y. 3D Printing as a New Packaging Approach for MEMS and Electronic Devices. In Proceedings of the 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 30 May–2 June 2017; pp. 1071–1079. [Google Scholar]
- Schmidt, K.; Polzinger, B.; Runtze, M.; Zimmermann, A. Embedding and Contacting of Electrical Components for Hybrid Additive Manufacturing. IEEE Trans. Compon. Packag. Manuf. Technol. 2022, 12, 1401–1409. [Google Scholar] [CrossRef]
- Zhang, Z.; Yuan, X. Applications and Future of Automated and Additive Manufacturing for Power Electronics Components and Converters. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 4509–4525. [Google Scholar] [CrossRef]
- Varzaru, G.; Savu, M.; Mihailescu, B.; Ionescu, C.; Branzei, M. Contributions to an additive method for manufacturing solderless assembly for electronics. J. Phys. Conf. Ser. 2022, 2339, 012029. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mastronardi, V.M.; Qualtieri, A.; Boni, E.; Tortoli, P.; De Fazio, R.; Visconti, P.; Todaro, M.T.; De Vittorio, M. Additive Manufacturing Electronics for Packaging High-Frequency Aluminum Nitride Piezoelectric Micromachined Ultrasonic Transducer Probes. Proceedings 2024, 97, 52. https://doi.org/10.3390/proceedings2024097052
Mastronardi VM, Qualtieri A, Boni E, Tortoli P, De Fazio R, Visconti P, Todaro MT, De Vittorio M. Additive Manufacturing Electronics for Packaging High-Frequency Aluminum Nitride Piezoelectric Micromachined Ultrasonic Transducer Probes. Proceedings. 2024; 97(1):52. https://doi.org/10.3390/proceedings2024097052
Chicago/Turabian StyleMastronardi, Vincenzo Mariano, Antonio Qualtieri, Enrico Boni, Piero Tortoli, Roberto De Fazio, Paolo Visconti, Maria Teresa Todaro, and Massimo De Vittorio. 2024. "Additive Manufacturing Electronics for Packaging High-Frequency Aluminum Nitride Piezoelectric Micromachined Ultrasonic Transducer Probes" Proceedings 97, no. 1: 52. https://doi.org/10.3390/proceedings2024097052
APA StyleMastronardi, V. M., Qualtieri, A., Boni, E., Tortoli, P., De Fazio, R., Visconti, P., Todaro, M. T., & De Vittorio, M. (2024). Additive Manufacturing Electronics for Packaging High-Frequency Aluminum Nitride Piezoelectric Micromachined Ultrasonic Transducer Probes. Proceedings, 97(1), 52. https://doi.org/10.3390/proceedings2024097052