HyperTaste Lab—A Notebook with a Machine Learning Pipeline for Chemical Sensor Arrays †
Abstract
:1. Introduction
2. Materials and Methods
- Loading data from a CSV file and splitting them into TXT files containing voltage data per sample;
- The visualization of raw time series potentiometric data per sample;
- A Principal Component Analysis (PCA) for data exploration and unsupervised analysis;
- Supervised learning for classification and regression machine learning models;
- The visualization of multi-output regression model predictions in radar charts;
- The export of trained models along with model metadata in ONNX format.
3. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vlasov, Y.; Legin, A.; Rudnitskaya, A.; Di Natale, C.; D’Amico, A. Nonspecific sensor arrays (‘electronic tongue’) for chemical analysis of liquids: (IUPAC technical report). Pure Appl. Chem. 2005, 77, 1965–1983. [Google Scholar] [CrossRef]
- Kirsanov, D.; Correa, D.S.; Gaal, G.; Riul, A.; Braunger, M.L.; Shimizu, F.M.; Oliveira, O.N.; Liang, T.; Wan, H.; Wang, P.; et al. Electronic Tongues for Inedible Media. Sensors 2019, 19, 5113. [Google Scholar] [CrossRef] [PubMed]
- Perkel, J.M. Why Jupyter is data scientists’ computational notebook of choice. Nature 2018, 563, 145–147. [Google Scholar] [CrossRef] [PubMed]
- Gabrieli, G.; Hu, R.; Matsumoto, K.; Temiz, Y.; Bissig, S.; Cox, A.; Heller, R.; López, A.; Barroso, J.; Kaneda, K.; et al. Combining an integrated sensor array with machine learning for the simultaneous quantification of multiple cations in aqueous mixtures. Anal. Chem. 2021, 93, 16853–16861. [Google Scholar] [CrossRef] [PubMed]
- Gabrieli, G.; Muszynski, M.; Thomas, E.; Labbe, D.; Ruch, P. Accelerated estimation of coffee sensory profiles using an AI-assisted electronic tongue. Innov. Food Sci. Emerg. Technol. 2022, 82, 103205. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabrieli, G.; Muszynski, M.; Manica, M.; Cadow-Gossweiler, J.; Ruch, P.W. HyperTaste Lab—A Notebook with a Machine Learning Pipeline for Chemical Sensor Arrays. Proceedings 2024, 97, 67. https://doi.org/10.3390/proceedings2024097067
Gabrieli G, Muszynski M, Manica M, Cadow-Gossweiler J, Ruch PW. HyperTaste Lab—A Notebook with a Machine Learning Pipeline for Chemical Sensor Arrays. Proceedings. 2024; 97(1):67. https://doi.org/10.3390/proceedings2024097067
Chicago/Turabian StyleGabrieli, Gianmarco, Michal Muszynski, Matteo Manica, Joris Cadow-Gossweiler, and Patrick W. Ruch. 2024. "HyperTaste Lab—A Notebook with a Machine Learning Pipeline for Chemical Sensor Arrays" Proceedings 97, no. 1: 67. https://doi.org/10.3390/proceedings2024097067
APA StyleGabrieli, G., Muszynski, M., Manica, M., Cadow-Gossweiler, J., & Ruch, P. W. (2024). HyperTaste Lab—A Notebook with a Machine Learning Pipeline for Chemical Sensor Arrays. Proceedings, 97(1), 67. https://doi.org/10.3390/proceedings2024097067