Numerical Study of a Direct Injection Internal Combustion Engine Burning a Blend of Hydrogen and Dimethyl Ether
Abstract
:1. Introduction
2. Numerical Models and Validation
2.1. Computational Model
2.2. Validation of Model
3. Reforming Controlled Compression Ignition (RefCCI) Engine Simulations
4. Results and Discussion
5. Summary and Conclusions
6. Further Research
Author Contributions
Funding
Conflicts of Interest
References
- Mikulski, M.; Bekdemir, C. Understanding the role of low reactivity fuel stratification in a dual fuel RCCI engine—A simulation study. Appl. Energy 2017, 191, 689–708. [Google Scholar] [CrossRef]
- Tartakovsky, L.; Gutman, M.; Mosyak, A. Energy Efficiency: Methods, Limitations and Challenges. In Energy Efficiency of Road Vehicles—Trends and Challenges; Nova Science Publishers: New York, NY, USA, 2012; pp. 63–90. [Google Scholar]
- Verhelst, S.; Wallner, T. Hydrogen-fueled internal combustion engines. Prog. Energy Combust. Sci. 2009, 35, 490–527. [Google Scholar] [CrossRef]
- Inagaki, K.; Fuyuto, T.; Nishikawa, K.; Nakakita, K.; Sakata, I. Dual-Fuel PCI Combustion Controlled by in-Cylinder Stratification of Ignitability; SAE Technical Paper 2006-01-0028; SAE International: Warrendale, PA, USA, 2006. [Google Scholar]
- Kokjohn, S.L.; Hanson, R.M.; Splitter, D.; Reitz, R. Fuel reactivity controlled compression ignition (RCCI): A pathway to controlled high-efficiency clean combustion. Int. J. Engine Res. 2011, 12, 209–226. [Google Scholar] [CrossRef]
- Reitz, R.D.; Duraisamy, G. Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. Prog. Energy Combust. Sci. 2015, 46, 12–71. [Google Scholar] [CrossRef]
- Li, J.; Yang, W.; Zhou, D. Review on the management of RCCI engines. Renew. Sustain. Energy Rev. 2017, 69, 65–79. [Google Scholar] [CrossRef]
- Nazemi, M.; Shahbakhti, M. Modeling and analysis of fuel injection parameters for combustion and performance of an RCCI engine. Appl. Energy 2016, 165, 135–150. [Google Scholar] [CrossRef]
- Rahnama, P.; Paykani, A.; Reitz, R.D. A numerical study of the effects of using hydrogen, reformer gas and nitrogen on combustion, emissions and load limits of a heavy duty natural gas/diesel RCCI engine. Appl. Energy 2017, 193, 182–198. [Google Scholar] [CrossRef]
- Haworth, D.; Jansen, K. LES on Unstructured Deforming Meshes: Towards Reciprocating IC Engines; General Motors Research Labs.: Warren, MI, USA, 1996. [Google Scholar]
- He, C.; Leudesdorff, W.; di Mare, F.; Sadiki, A.; Janicka, J. Analysis of In-cylinder Flow Field Anisotropy in IC Engine using Large Eddy Simulation. Flow Turbul. Combust. 2017, 99, 353–383. [Google Scholar] [CrossRef]
- Di Sarli, V.; Benedetto, A.D. Sensitivity to the presence of the combustion submodel for large eddy simulation of transient premixed flame—Vortex interactions. Ind. Eng. Chem. Res. 2012, 51, 7704–7712. [Google Scholar] [CrossRef]
- Tartakovsky, L.; Sheintuch, M. Fuel reforming in internal combustion engines. Prog. Energy Combust. Sci. 2018, 67, 88–114. [Google Scholar] [CrossRef]
- Poran, A.; Tartakovsky, L. Performance and emissions of a direct injection internal combustion engine devised for joint operation with a high-pressure thermochemical recuperation system. Energy 2017, 124, 214–226. [Google Scholar] [CrossRef]
- Poran, A.; Thawko, A.; Eyal, A.; Tartakovsky, L. Direct injection internal combustion engine with high-pressure thermochemical recuperation—Experimental study of the first prototype. Int. J. Hydrogen Energy 2018, 43, 11969–11980. [Google Scholar] [CrossRef]
- Eyal, A.; Tartakovsky, L. Reforming Controlled Homogenous Charge Compression Ignition—Simulation Results; SAE Technical Paper 2016-32-0014; SAE International: Warrendale, PA, USA, 2016. [Google Scholar]
- Eyal, A. Reforming-controlled HCCI process. In Proceedings of the 6th International Conference on UAV Propulsion Technologies, Haifa, Israel, 26 January 2017. [Google Scholar]
- Richards, K.J.; Pomraning, E. CONVERGE (v2.4); Convergent Science: Madison, WI, USA, 2017. [Google Scholar]
- Senecal, P.K.; Pomraning, E.; Richards, K.J.; Briggs, T.E.; Choi, C.Y.; McDavid, R.M.; Patterson, M.A. Multi-Dimensional Modeling of Direct-Injection Diesel Spray Liquid Length and Flame Lift-Off Length Using CFD and Parallel Detailed Chemistry; SAE Technical Paper 2003-01-1043; SAE International: Warrendale, PA, USA, 2003. [Google Scholar]
- Curran, H.J.; Fisher, E.M.; Glaude, P.A.; Marinov, N.M.; Pitz, W.J.; Westbrook, C.K.; Layton, D.W.; Flynn, P.F.; Durrett, R.P.; zur Loye, A.O.; et al. Detailed Chemical Kinetic Modeling of Diesel Combustion with Oxygenated Fuels; SAE Technical Paper 2001-01-0653; SAE International: Warrendale, PA, USA, 2001. [Google Scholar]
- Fuest, F.; Magnotti, G.; Barlow, R.; Sutton, J. Scalar structure of turbulent partially-premixed dimethyl ether/air jet flames. Proc. Combust. Inst. 2015, 35, 1235–1242. [Google Scholar] [CrossRef] [Green Version]
- Coriton, B.; Zendehdel, M.; Ukai, S.; Kronenburg, A.; Stein, O.T.; Im, S.K.; Gamba, M.; Frank, J.H. Imaging measurements and LES-CMC modeling of a partially-premixed turbulent dimethyl ether/air jet flame. Proc. Combust. Inst. 2015, 35, 1251–1258. [Google Scholar] [CrossRef] [Green Version]
- Salazar, V.M.; Kaiser, S.A. An optical study of mixture preparation in a hydrogen-fueled engine with direct injection using different nozzle designs. SAE Int. J. Engines 2009, 2, 119–131. [Google Scholar] [CrossRef]
- Salazar, V.; Kaiser, S. Influence of the flow field on flame propagation in a hydrogen-fueled internal combustion engine. SAE Int. J. Engines 2011, 4, 2376–2394. [Google Scholar] [CrossRef]
- Scarcelli, R.; Wallner, T.; Matthias, N.; Salazar, V.; Kaiser, S. Mixture formation in direct injection hydrogen engines: CFD and optical analysis of single-and multi-hole nozzles. SAE Int. J. Engines 2011, 4, 2361–2375. [Google Scholar] [CrossRef]
- Woschni, G. A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine; SAE Technical Paper 670931; SAE International: Warrendale, PA, USA, 1967. [Google Scholar]
- O’Rourke, P.; Amsden, A. Implementation of a Conjugate Residual Iteration in the KIVA Computer Program; Technical Report; Los Alamos National Lab.: Santa Fe, NM, USA, 1986. [Google Scholar]
- Cung, K.; Moiz, A.A.; Zhu, X.; Lee, S.Y. Ignition and formaldehyde formation in dimethyl ether (DME) reacting spray under various EGR levels. Proc. Combust. Inst. 2017, 36, 3605–3612. [Google Scholar] [CrossRef]
- Arcoumanis, C.; Bae, C.; Crookes, R.; Kinoshita, E. The potential of di-methyl ether (DME) as an alternative fuel for compression-ignition engines: A review. Fuel 2008, 87, 1014–1030. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Grover, R.O.; Gopalakrishnan, V.; Diwakar, R.; Elwasif, W.; Edwards, K.D.; Finney, C.E.; Whitesides, R. Steady-state Calibration of a Diesel Engine in CFD using a GPU-based Chemistry Solver. In Proceedings of the ASME 2017 Internal Combustion Engine Division Fall Technical Conference, Seattle, WA, USA, 15–18 October 2017; p. V002T06A025. [Google Scholar]
Bore | 92 mm |
Stroke | 85 mm |
Displacement | 565 cm |
Compression ratio | 11 |
Speed | 1500 rpm |
Intake pressure/Temperature | 1 bar/36 C |
Intake valve timing | open: 346CA / close: −140CA |
Exhaust valve timing | open: 130CA/ close: −356CA |
High pressure direct injection | |
Injection pressure | 25 bar |
Nominal Start of injection | −137CA |
Actual Start of injection | −134CA |
Injection duration | 74.5CA |
Maximum mass flow rate | 5 × 10 kg/s |
Bore | 80 mm |
Stroke | 73 mm |
Displacement | 367 cm |
Compression ratio | 16 |
Speed | 2500 rpm |
Intake pressure/Temperature | 1 bar/36 C |
Intake valve timing | open: 28BTDC / close: 4BBDC |
Exhaust valve timing | open: 38BBDC/ close: 4ATDC |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faingold, G.; Tartakovsky, L.; Frankel, S.H. Numerical Study of a Direct Injection Internal Combustion Engine Burning a Blend of Hydrogen and Dimethyl Ether. Drones 2018, 2, 23. https://doi.org/10.3390/drones2030023
Faingold G, Tartakovsky L, Frankel SH. Numerical Study of a Direct Injection Internal Combustion Engine Burning a Blend of Hydrogen and Dimethyl Ether. Drones. 2018; 2(3):23. https://doi.org/10.3390/drones2030023
Chicago/Turabian StyleFaingold, Galia, Leonid Tartakovsky, and Steven H. Frankel. 2018. "Numerical Study of a Direct Injection Internal Combustion Engine Burning a Blend of Hydrogen and Dimethyl Ether" Drones 2, no. 3: 23. https://doi.org/10.3390/drones2030023
APA StyleFaingold, G., Tartakovsky, L., & Frankel, S. H. (2018). Numerical Study of a Direct Injection Internal Combustion Engine Burning a Blend of Hydrogen and Dimethyl Ether. Drones, 2(3), 23. https://doi.org/10.3390/drones2030023