Positional Precision Analysis of Orthomosaics Derived from Drone Captured Aerial Imagery
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
GCP ID | X Coordinate of Mean Center (m) | Y Coordinate of Mean Center (m) | Standard Distance of Summary Circle (m) | Azimuth of Ellipse Rotation (degree) | Major Semi-axis of Ellipse (m) | Minor Semi-axis of Ellipse (m) | Area of Deviational Ellipse (sq m) |
---|---|---|---|---|---|---|---|
1 | 343,565.68 | 3,497,810.96 | 1.61 | 55.87 | 2.12 | 0.83 | 5.50 |
2 | 343,676.42 | 3,497,644.76 | 1.34 | 175.20 | 1.57 | 1.04 | 5.16 |
3 | 343,580.11 | 3,497,790.65 | 1.51 | 53.83 | 1.97 | 0.81 | 5.03 |
4 | 343,609.61 | 3,497,774.07 | 1.40 | 55.51 | 1.76 | 0.92 | 5.07 |
5 | 343,664.44 | 3,497,760.95 | 1.42 | 75.93 | 1.68 | 1.11 | 5.84 |
6 | 343,684.57 | 3,497,755.69 | 1.43 | 89.75 | 1.65 | 1.17 | 6.08 |
7 | 343,709.08 | 3,497,739.19 | 1.44 | 106.33 | 1.63 | 1.22 | 6.24 |
8 | 343,543.03 | 3,497,754.76 | 1.49 | 41.41 | 1.98 | 0.74 | 4.57 |
9 | 343,578.99 | 3,497,748.25 | 1.40 | 44.47 | 1.82 | 0.78 | 4.48 |
10 | 343,622.92 | 3,497,742.58 | 1.33 | 52.03 | 1.60 | 0.99 | 4.99 |
11 | 343,650.46 | 3,497,715.59 | 1.31 | 51.15 | 1.47 | 1.13 | 5.25 |
12 | 343,703.78 | 3,497,714.32 | 1.40 | 117.54 | 1.53 | 1.26 | 6.05 |
13 | 343,691.44 | 3,497,679.65 | 1.33 | 160.45 | 1.43 | 1.21 | 5.45 |
14 | 343,612.96 | 3,497,706.88 | 1.29 | 37.25 | 1.57 | 0.93 | 4.57 |
15 | 343,642.22 | 3,497,641.95 | 1.29 | 8.35 | 1.55 | 0.95 | 4.63 |
16 | 343,601.89 | 3,497,605.10 | 1.37 | 11.42 | 1.75 | 0.83 | 4.60 |
17 | 343,537.89 | 3,497,739.31 | 1.48 | 39.11 | 1.96 | 0.71 | 4.35 |
18 | 343,593.37 | 3,497,712.18 | 1.31 | 36.76 | 1.65 | 0.82 | 4.27 |
19 | 343,617.63 | 3,497,687.93 | 1.25 | 26.93 | 1.54 | 0.89 | 4.29 |
20 | 343,634.19 | 3,497,689.96 | 1.28 | 30.23 | 1.48 | 1.04 | 4.82 |
21 | 343,641.02 | 3,497,672.01 | 1.27 | 20.54 | 1.49 | 1.00 | 4.69 |
22 | 343,691.46 | 3,497,631.79 | 1.41 | 170.69 | 1.65 | 1.12 | 5.79 |
23 | 343,663.07 | 3,497,611.75 | 1.38 | 178.48 | 1.69 | 0.98 | 5.23 |
24 | 343,614.02 | 3,497,619.44 | 1.34 | 12.66 | 1.70 | 0.86 | 4.56 |
25 | 343,597.85 | 3,497,649.51 | 1.31 | 19.77 | 1.67 | 0.78 | 4.10 |
26 | 343,535.58 | 3,497,671.47 | 1.43 | 27.69 | 1.88 | 0.75 | 4.43 |
27 | 343,507.68 | 3,497,659.14 | 1.54 | 25.95 | 2.03 | 0.81 | 5.15 |
28 | 343,522.87 | 3,497,635.29 | 1.51 | 23.01 | 1.99 | 0.80 | 4.98 |
29 | 343,598.13 | 3,497,574.59 | 1.48 | 9.18 | 1.89 | 0.90 | 5.34 |
30 | 343,633.66 | 3,497,586.16 | 1.42 | 5.81 | 1.79 | 0.90 | 5.05 |
References
- Campbell, J.B.; Wynne, R.H. Introduction to Remote Sensing, 5th ed.; Guilford Press: New York, NY, USA, 2011; ISBN 978-1-60918-176-5. [Google Scholar]
- Nex, F.; Remondino, F. UAV for 3D mapping applications: A review. Appl. Geomat. 2014, 6, 1–15. [Google Scholar] [CrossRef]
- Neitzel, F.; Klonowski, J. Mobile 3D mapping with a low-cost UAV system. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, XXXVIII-1-C22, 39–44. [Google Scholar] [CrossRef]
- Viegut, R.; Kulhavy, D.L.; Unger, D.R.; Hung, I.-K.; Humphreys, B. Integrating unmanned aircraft systems to measure linear and areal features into undergraduate forestry education. Int. J. High. Educ. 2018, 7, 63–75. [Google Scholar] [CrossRef]
- Nogueira, F.; da, C.; Roberto, L.; Körting, T.S.; Shiguemori, E.H. Accuracy analysis of orthomosaic and DSM produced from sensor aboard UAV. In Proceedings of the Anias do XVIII Simposio Brasileiro de Sensoriamento Remoto, Santos, Brazil, 28–31 May 2017; pp. 5515–5520. [Google Scholar]
- Kulhavy, D.L.; Endsley, G.; Unger, D.; Grisham, R.; Gannon, M.; Coble, D. Service learning for the Port Jefferson History and Nature Center: Senior capstone forestry course. J. Community Engagem. High. Educ. 2017, 9, 41–53. [Google Scholar]
- Unger, D.; Hung, I.-K.; Zhang, Y.; Kulhavy, D. Integrating drone technology with GPS data collection to enhance forestry students interactive hands-on field experiences. High. Educ. Stud. 2018, 8, 49–62. [Google Scholar] [CrossRef]
- Fardusi, M.; Chianucci, F.; Barbati, A. Concept to practice of geospatial-information tools to assist forest management and planning under precision forestry framework: A review. Ann. Silvic. Res. 2017, 41, 3–14. [Google Scholar]
- Toth, C.; Jóźków, G. Remote sensing platforms and sensors: A survey. ISPRS J. Photogramm. Remote Sens. 2016, 115, 22–36. [Google Scholar] [CrossRef]
- Unger, D.; Kulhavy, D.; Busch-Petersen, K.; Hung, I.-K. Integrating faculty led service learning training to quantify height of natural resources from a spatial science perspective. Int. J. High. Educ. 2016, 5, 104–116. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, J.; Lian, J.; Fan, Z.; Ouyang, X.; Ye, W. Seeing the forest from drones: Testing the potential of lightweight drones as a tool for long-term forest monitoring. Biol. Conserv. 2016, 198, 60–69. [Google Scholar] [CrossRef]
- Anderson, K.; Gaston, K. Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Front. Ecol. Environ. 2013, 11, 138–146. [Google Scholar] [CrossRef] [Green Version]
- Paneque-Gálvez, J.; McCall, M.K.; Napoletano, B.M.; Wich, S.A.; Koh, L.P. Small drones for community-based forest monitoring: an assessment of their feasibility and potential in tropical areas. Forests 2014, 5, 1481–1507. [Google Scholar] [CrossRef]
- Liba, N.; Berg-Jürgens, J. Accuracy of orthomosaic enerated by different methods in example of UAV platform MUST Q. IOP Conf. Ser. Mater. Sci. Eng. 2015, 96, 1–8. [Google Scholar] [CrossRef]
- Nagendran, S.K.; Tung, W.Y.; Ismail, M.A.M. Accuracy assessment on low altitude UAV-borne photogrammetry outputs influenced by ground control point at different altitude. IOP Conf. Ser. Earth Environ. Sci. 2018, 169, 1–9. [Google Scholar] [CrossRef]
- Lima, S.; Kux, H.; Shiguemori, E. Accuracy of autonomy navigation of unmanned aircraft systems through imagery. Int. J. Mech. Mechatron. Eng. 2018, 12, 466–470. [Google Scholar]
- Tomaštík, J.; Mokroš, M.; Saloň, Š.; Chudý, F.; Tunák, D. Accuracy of photogrammetric UAV-based point clouds under conditions of partially-open forest canopy. Forests 2017, 8, 151. [Google Scholar] [CrossRef]
- Júnior, L.; Ferreira, M.; Côrtes, J.; Jorge, L. High accuracy mapping with cartographic assessment for a fixed-wing remotely piloted aircraft system. J. Appl. Remote Sens. 2018, 12, 014003. [Google Scholar]
- Prajwal, M.; Rishab, J.; Vaibhav, S.; Karthik, K.S. Optimal number of ground control points for a UAV based corridor mapping. Int. J. Innov. Res. Sci. Eng. Technol. 2016, 5, 28–32. [Google Scholar]
Specifications | DJI Phantom 3 Advanced | DJI Phantom 4 Professional |
---|---|---|
Weight | 1280 g | 1388 g |
Diagonal size | 350 mm | 350 mm |
Max speed | 57.6 km/h | 72.0 km/h |
Max serve celling MSL | 6000 m | 6000 m |
Max flight time | 23 min | 30 min |
GNSS | GPS/GLONASS | GPS/GLONASS |
Camera lens | FOV 94°, 20 mm, f/2.8 | FOV 84°, 24 mm, f/2.8-f11 |
Image sensor | 1/2.3” CMOS, 12.4M pixels | 1” CMOS, 20.0M pixels |
Hover Accuracy | ||
Vertical: | ±0.1 m (with Vision Positioning) | ±0.1 m (with Vision Positioning) |
±0.5 m (with GPS Positioning) | ±0.5 m (with GPS Positioning) | |
Horizontal: | ±0.3 m (with Vision Positioning) | ±0.3 m (with Vision Positioning) |
±1.5 m (with GPS Positioning | ±1.5 m (with GPS Positioning |
Date of Flight | Number of Photos Used for the Mosaic | Spatial Resolution of the Mosaic (cm) | Drone Model Used |
---|---|---|---|
9/7/2017 | 378 | 2.73 | Phantom 4 |
10/17/2017 | 288 | 2.95 | Phantom 3 |
11/13/2017 | 288 | 2.95 | Phantom 3 |
12/14/2017 | 286 | 2.89 | Phantom 3 |
1/15/2018 | 230 | 2.78 | Phantom 3 |
2/15/2018 | 306 | 2.89 | Phantom 3 |
3/6/2018 | 168 | 2.57 | Phantom 4 |
Date | 9/7 2017 | 10/17 2017 | 11/13 2017 | 12/14 2017 | 1/15 2018 | 2/15 2018 | 3/6 2018 |
---|---|---|---|---|---|---|---|
Time | 10:00 | 10:30 | 10:30 | 12:00 | 14:15 | 12:30 | 9:30 |
Temperature (C) | 26.1 | 24.4 | 17.8 | 13.3 | 6.1 | 22.8 | 20.0 |
Dew Point (C) | 11.1 | 3.9 | 15.0 | 1.7 | 5.6 | 18.3 | −6.1 |
Humidity (%) | 39 | 26 | 83 | 45 | 97 | 76 | 17 |
Wind Direction | Variable | ENE | NE | NNW | N | S | NNW |
Wind Speed (km/h) | 8.1 | 11.3 | 9.7 | 4.8 | 16.1 | 11.3 | 22.5 |
Wind Gust (km/h) | 0 | 0 | 0 | 0 | 0 | 0 | 35.4 |
Pressure (mm Hg) | 757 | 757 | 759 | 752 | 762 | 752 | 752 |
Weather Condition | Fair | Fair | Cloudy | Fair | Cloudy | Mostly Cloudy | Fair |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hung, I.-K.; Unger, D.; Kulhavy, D.; Zhang, Y. Positional Precision Analysis of Orthomosaics Derived from Drone Captured Aerial Imagery. Drones 2019, 3, 46. https://doi.org/10.3390/drones3020046
Hung I-K, Unger D, Kulhavy D, Zhang Y. Positional Precision Analysis of Orthomosaics Derived from Drone Captured Aerial Imagery. Drones. 2019; 3(2):46. https://doi.org/10.3390/drones3020046
Chicago/Turabian StyleHung, I-Kuai, Daniel Unger, David Kulhavy, and Yanli Zhang. 2019. "Positional Precision Analysis of Orthomosaics Derived from Drone Captured Aerial Imagery" Drones 3, no. 2: 46. https://doi.org/10.3390/drones3020046
APA StyleHung, I. -K., Unger, D., Kulhavy, D., & Zhang, Y. (2019). Positional Precision Analysis of Orthomosaics Derived from Drone Captured Aerial Imagery. Drones, 3(2), 46. https://doi.org/10.3390/drones3020046