Monitoring Onion Crop “Cipolla Rossa di Tropea Calabria IGP” Growth and Yield Response to Varying Nitrogen Fertilizer Application Rates Using UAV Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design and Crop Management
2.3. Soil Sampling and Statistical Analysis of Soil Parameters
2.4. UAV and Image Data Acquisition
2.5. Image Data Pre-Processing
2.6. Image Data Processing: Segmentation, Classification, and SAVI Maps
3. Results and Discussion
3.1. Chemical Soil Parameters and Fresh Onion Yield
3.2. Soil-Adjusted Vegetation Index Maps
3.3. Relationship between Nitrogen Fertilization, Onion Yield, and SAVI Mapschemical Parameters and Fresh Onion Yield
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Society of Precision Agriculture. Available online: www.ispag.org (accessed on 18 April 2021).
- Benincasa, P.; Antognelli, S.; Brunetti, L.; Fabbri, C.A.; Natale, A.; Sartoretti, V.; Modeo, G.; Guiducci, M.; Tei, F.; Vizzari, M. Reliability of Ndvi Derived By High Resolution Satellite and Uav Compared To in-Field Methods for the Evaluation of Early Crop N Status and Grain Yield in Wheat. Exp. Agric. 2017, 54, 1–19. [Google Scholar] [CrossRef]
- Zude-Sasse, M.; Fountas, S.; Gemtos, T.A.; Abu-Khalaf, N. Applications of precision agriculture in horticultural crops. Eur. J. Hortic. Sci. 2016, 81, 78–90. [Google Scholar] [CrossRef]
- Radoglou-Grammatikis, P.; Sarigiannidis, P.; Lagkas, T.; Moscholios, I. A compilation of UAV applications for precision agriculture. Comput. Netw. 2020. [Google Scholar] [CrossRef]
- Houborg, R.; McCabe, M.F. High-Resolution NDVI from planet’s constellation of earth observing nano-satellites: A new data source for precision agriculture. Remote Sens. 2016, 8, 768. [Google Scholar] [CrossRef] [Green Version]
- Messina, G.; Peña, J.M.; Vizzari, M.; Modica, G. A Comparison of UAV and Satellites Multispectral Imagery in Monitoring Onion Crop. An Application in the ‘Cipolla Rossa di Tropea’ (Italy). Remote Sens. 2020, 12, 3424. [Google Scholar] [CrossRef]
- Zhang, C.; Kovacs, J.M. The application of small unmanned aerial systems for precision agriculture: A review. Precis. Agric. 2012, 13, 693–712. [Google Scholar] [CrossRef]
- Capolupo, A.; Kooistra, L.; Berendonk, C.; Boccia, L.; Suomalainen, J. Estimating plant traits of grasslands from UAV-acquired hyperspectral images: A comparison of statistical approaches. ISPRS Int. J. Geo-Inf. 2015, 4, 2792–2820. [Google Scholar] [CrossRef]
- He, Y.; Weng, Q. High Spatial Resolution Remote Sensing. Data, Analysis, and Applications; CRC Press: Boca Raton, FL, USA, 2018; ISBN 9780429470196. [Google Scholar]
- Córcoles, J.I.; Ortega, J.F.; Hernández, D.; Moreno, M.A. Estimation of leaf area index in onion (Allium cepa L.) using an unmanned aerial vehicle. Biosyst. Eng. 2013, 115, 31–42. [Google Scholar] [CrossRef]
- Ballesteros, R.; Ortega, J.F.; Hernandez, D.; Moreno, M.A. Onion biomass monitoring using UAV-based RGB imaging. Precis. Agric. 2018, 1–18. [Google Scholar] [CrossRef]
- Aboukhadrah, S.H.; El-Alsayed, A.W.A.H.; Sobhy, L.; Abdelmasieh, W. Response of Onion Yield and Quality to Different Planting Date, Methods and Density. Egypt. J. Agron. 2017, 39, 203–219. [Google Scholar] [CrossRef]
- Mallor, C.; Balcells, M.; Mallor, F.; Sales, E. Genetic variation for bulb size, soluble solids content and pungency in the Spanish sweet onion variety Fuentes de Ebro. Response to selection for low pungency. Plant Breed. 2011, 130, 55–59. [Google Scholar] [CrossRef] [Green Version]
- Pareek, S.; Sagar, N.A.; Sharma, S.; Kumar, V. Onion (Allium cepa L.). In Fruit and Vegetable Phytochemicals: Chemistry and Human Health; Yahia, E.M., Ed.; Wiley Blackwell: Hoboken, NJ, USA, 2017; pp. 1145–1159. [Google Scholar]
- Bhanderi, D.R.; More, S.J.; Jethava, B. Optimization of yield and growth in onion through spacing and time of planting. Green Farming Int. J. 2015, 6, 305–307. [Google Scholar]
- Lee, J.; Moon, J.; Kim, H.; Ha, I.; Lee, S. Reduced Nitrogen, Phosphorus, And Potassium Rates For Intermediate-Day Onion in Paddy Soil With Incorporated Rice Straw Plus Manure. HortScience 2011, 46, 470–474. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press: San Diego, CA, USA, 1995. [Google Scholar]
- Balasubramaniyan, P.; Palaniappan, S.P. Principle and practices of Agronomy. Agrobios 2001, 21–24. [Google Scholar] [CrossRef] [Green Version]
- Nawaz, M.Q.; Ahmed, K.; Hussain, S.S.; Rizwan, M.; Sarfraz, M.; Wainse, G.M.; Jamil, M. Response of onion to different nitrogen levels and method of transplanting in moderately salt affected soil. Acta Agric. Slov. 2017, 109, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Fageria, N.K.; Baligar, V.C. Enhancing Nitrogen Use Efficiency in Crop Plants. Adv. Agron. 2005, 88, 97–185. [Google Scholar]
- Brewster, J.L. Onions and Other Vegetable Alliums, 2nd ed.; Horticulture Research International: Wellesbourne, UK, 2008; Volume 2, ISBN 9781845933999. [Google Scholar]
- Dinkale, T.; Semman, U. Effects of Different Level of Nitrogen Fertilizer Application on Growth, Yield, Quality and Storage Life of Onion (Allium cepa L.) at Jimma, South Western Ethiopia. J. Nat. Sci. Res. 2019, 9, 7–12. [Google Scholar] [CrossRef]
- Lee, J.; Lee, S. Correlations between soil physico-chemical properties and plant nutrient concentrations in bulb onion grown in paddy soil. Sci. Hortic. (Amst.) 2014, 179, 158–162. [Google Scholar] [CrossRef]
- Tiberini, A.; Mangano, R.; Micali, G.; Leo, G.; Manglli, A.; Tomassoli, L.; Albanese, G. Onion yellow dwarf virus ∆∆Ct-based relative quantification obtained by using real-time polymerase chain reaction in ‘Rossa di Tropea’ onion. Eur. J. Plant Pathol. 2019, 153, 251–264. [Google Scholar] [CrossRef]
- Belgiu, M.; Csillik, O. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sens. Environ. 2018, 204, 509–523. [Google Scholar] [CrossRef]
- Jeong, S.; Kim, D.; Yun, H.; Cho, W.; Kwon, Y.; Kim, H. Monitoring the growth status variability in Onion (Allium cepa) and Garlic (Allium sativum) with RGB and multi-spectral UAV remote sensing imagery. In Proceedings of the 7th Asian-Australasian Conference on Precision Agriculture, Hamilton, New Zealand, 16–18 October 2017; pp. 1–6. [Google Scholar]
- Messina, G.; Fiozzo, V.; Praticò, S.; Siciliani, B.; Curcio, A.; Di Fazio, S.; Modica, G. Monitoring Onion Crops Using Multispectral Imagery from Unmanned Aerial Vehicle (UAV). In Proceedings of the “NEW METROPOLITAN PERSPECTIVES, Knowledge Dynamics and Innovation-driven Policies Towards Urban and Regional Transition”, Reggio Calabria, Italy, 26–28 May 2020; Bevilacqua, C., Francesco, C., Della Spina, L., Eds.; Springer: Reggio Calabria, Italy, 2020; Volume 2, pp. 1640–1649. [Google Scholar] [CrossRef]
- Messina, G.; Praticò, S.; Siciliani, B.; Curcio, A.; Di Fazio, S.; Modica, G. Telerilevamento multispettrale da drone per il monitoraggio delle colture in agricoltura di precisione. Un’applicazione alla cipolla rossa di Tropea (Multispectral UAV remote sensing for crop monitoring in precision farming. An application to the Red Onion of Tropea). LaborEst 2020, 21. [Google Scholar] [CrossRef]
- Zhao, L.; Shi, Y.; Liu, B.; Hovis, C.; Duan, Y.; Shi, Z. Finer Classification of Crops by Fusing UAV Images and Sentinel-2A Data. Remote Sens. 2019, 11, 3012. [Google Scholar] [CrossRef] [Green Version]
- Modica, G.; De Luca, G.; Messina, G.; Praticò, S. Comparison and assessment of different object-based classifications using machine learning algorithms and UAVs multispectral imagery: A case study in a citrus orchard and an onion crop. Eur. J. Remote Sens. 2021. [Google Scholar] [CrossRef]
- Available online: www.consorziocipollatropeaigp.com (accessed on 2 February 2021).
- ISMEA. ISMEA (Istituto di Servizi per il Mercato Agricolo Alimentare), 2020. Rapporto Ismea-Qualivita 2020; ISMEA: Roma, Italy, 2020. [Google Scholar]
- Russo, M.; Cefaly, V.; Di Sanzo, R.; Carabetta, S.; Postorino, S.; Serra, D. Characterization of different “Tropea red onion” (Allium cepa L.) ecotypes by aroma precursors, aroma profiles and polyphenolic composition. Proc. Acta Hortic. 2012, 939, 197–203. [Google Scholar] [CrossRef]
- Tedesco, I.; Carbone, V.; Spagnuolo, C.; Minasi, P.; Russo, G.L. Identification and quantification of flavonoids from two southern italian cultivars of Allium cepa L., Tropea (Red Onion) and Montoro (Copper Onion), and their capacity to protect human erythrocytes from oxidative stress. J. Agric. Food Chem. 2015, 63, 5229–5238. [Google Scholar] [CrossRef]
- Saviano, G.; Paris, D.; Melck, D.; Fantasma, F.; Motta, A.; Iorizzi, M. Metabolite variation in three edible Italian Allium cepa L. by NMR-based metabolomics: A comparative study in fresh and stored bulbs. Metabolomics 2019, 15. [Google Scholar] [CrossRef] [PubMed]
- Survey, S.S. Keys to Soil Taxonomy, 11th ed.; USDA-NRCS: Washington, DC, USA, 2010. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Meier, U. Growth Stages of Mono- and Dicotyledonous Plants; BBCH Monograph, Federal Biological Research Centre for Agriculture and Forestry: Bonn, Germany, 2001; Volume 12, ISBN 9783826331527. [Google Scholar]
- Modica, G.; Messina, G.; De Luca, G.; Fiozzo, V.; Praticò, S. Monitoring the vegetation vigor in heterogeneous citrus and olive orchards. A multiscale object-based approach to extract trees’ crowns from UAV multispectral imagery. Comput. Electron. Agric. 2020, 175, 105500. [Google Scholar] [CrossRef]
- Drǎguţ, L.; Csillik, O.; Eisank, C.; Tiede, D. Automated parameterisation for multi-scale image segmentation on multiple layers. ISPRS J. Photogramm. Remote Sens. 2014, 88, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef] [Green Version]
- Makinde, E.O.; Salami, A.T.; Olaleye, J.B.; Okewusi, O.C. Object Based and Pixel Based Classification Using Rapideye Satellite Imager of ETI-OSA, Lagos, Nigeria. Geoinform. FCE CTU 2016, 15, 59–70. [Google Scholar] [CrossRef]
- Solano, F.; Di Fazio, S.; Modica, G. A methodology based on GEOBIA and WorldView-3 imagery to derive vegetation indices at tree crown detail in olive orchards. Int. J. Appl. Earth Obs. Geoinf. 2019, 83, 101912. [Google Scholar] [CrossRef]
- Aguilar, M.A.; Aguilar, F.J.; García Lorca, A.; Guirado, E.; Betlej, M.; Cichon, P.; Nemmaoui, A.; Vallario, A.; Parente, C. Assessment of multiresolution segmentation for extracting greenhouses from WorldView-2 imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2016, 41, 145–152. [Google Scholar] [CrossRef] [Green Version]
- Baatz, M.; Schape, A. Multi-resolution segmentation: An optimization approach for high quality multi-scale. Beiträge Zum Agit XII Symp. Salsburg 2000, 12–23. [Google Scholar] [CrossRef]
- Trimble Inc. eCognition® Developer User Guide 1–312; Trimble Germany GmbH: Munich, Germany, 2020. [Google Scholar]
- Drǎguţ, L.; Tiede, D.; Levick, S.R. ESP: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. Int. J. Geogr. Inf. Sci. 2010, 24, 859–871. [Google Scholar] [CrossRef]
- El-naggar, A.M. Determination of optimum segmentation parameter values for extracting building from remote sensing images. Alex. Eng. J. 2018, 57, 3089–3097. [Google Scholar] [CrossRef]
- Ma, L.; Li, M.; Ma, X.; Cheng, L.; Du, P.; Liu, Y. A review of supervised object-based land-cover image classification. ISPRS J. Photogramm. Remote Sens. 2017, 130, 277–293. [Google Scholar] [CrossRef]
- Candiago, S.; Remondino, F.; De Giglio, M.; Dubbini, M.; Gattelli, M. Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sens. 2015, 7, 4026–4047. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Ruiz, F.; Sankaran, S.; Maja, J.M.; Lee, W.S.; Rasmussen, J.; Ehsani, R. Comparison of two aerial imaging platforms for identification of Huanglongbing-infected citrus trees. Comput. Electron. Agric. 2013, 91, 106–115. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Huete, A.R.; Jackson, R.D.; Post, D.F. Spectral response of a plant canopy with different soil backgrounds. Remote Sens. Environ. 1985, 17, 37–53. [Google Scholar] [CrossRef]
- Corwin, D.L.; Scudiero, E. Field-scale apparent soil electrical conductivity. Soil Sci. Soc. Am. J. 2020, 84, 1405–1441. [Google Scholar] [CrossRef]
- Badagliacca, G.; Petrovičovà, B.; Pathan, S.I.; Roccotelli, A.; Romeo, M.; Monti, M.; Gelsomino, A. Use of solid anaerobic digestate and no-tillage practice for restoring the fertility status of two Mediterranean orchard soils with contrasting properties. Agric. Ecosyst. Environ. 2020, 300. [Google Scholar] [CrossRef]
- Sivritepe, H.Ö.; Sivritepe, N. NaCl priming affects salt tolerance of onion (Allium cepa L.) seedlings. Proc. Acta Hortic. 2007, 729, 157–161. [Google Scholar] [CrossRef]
- Ashraf, M.; Harris, P.J.C. Potential biochemical indicators of salinity tolerance in plants. Plant Sci. 2004, 166, 3–16. [Google Scholar] [CrossRef]
- Bernstein, L.; Francois, L.E.; Clark, R.A. Interactive Effects of Salinity and Fertility on Yields of Grains and Vegetables 1. Agron. J. 1974, 66, 412–421. [Google Scholar] [CrossRef]
- Hoffman, G.J.; Rawlins, S.L. Growth and Water Potential of Root Crops as Influenced by Salinity and Relative Humidity 1. Agron. J. 1971, 63, 877–880. [Google Scholar] [CrossRef]
- Koriem, S.O.; El-Koliey, M.M.; Wahba, M.F. Onion bulb production from ‘“Shandwee 1”’ sets as affected by soil moisture stress. Assiut J. Agric. Sci. 1994, 1, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; He, H.; Feng, G.; Chen, Q. Effect of nitrogen and sulfur interaction on growth and pungency of different pseudostem types of Chinese spring onion (Allium fistulosum L.). Sci. Hortic. 2009, 121, 12–18. [Google Scholar] [CrossRef]
- Gharib, H.; Hafez, E.; El Sabagh, A. Optimized Potential of Utilization Efficiency and Productivity in Wheat by Integrated Chemical Nitrogen Fertilization and Stimulative Compounds. Cercet. Agron. Mold. 2016, 49, 5–20. [Google Scholar] [CrossRef] [Green Version]
- Sorensen, J.N.; Grevsen, K. Sprouting in bulb onions (Allium cepa L.) as influenced by nitrogen and water stress. J. Hortic. Sci. Biotechnol. 2001, 76, 501–506. [Google Scholar] [CrossRef]
- Buckland, K.; Reeve, J.R.; Alston, D.; Nischwitz, C.; Drost, D. Effects of nitrogen fertility and crop rotation on onion growth and yield, thrips densities, Iris yellow spot virus and soil properties. Agric. Ecosyst. Environ. 2013, 177, 63–74. [Google Scholar] [CrossRef]
- Gebretsadik, K.; Dechassa, N. Response of Onion (Allium cepa L.) to nitrogen fertilizer rates and spacing under rain fed condition at Tahtay Koraro, Ethiopia. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef] [PubMed]
- Martín De Santa Olalla, F.; Domínguez-Padilla, A.; López, R. Production and quality of the onion crop (Allium cepa L.) cultivated under controlled deficit irrigation conditions in a semi-arid climate. Agric. Water Manag. 2004, 68, 77–89. [Google Scholar] [CrossRef]
- Belem, A.B.; de Oliveira, A.P.; Guimarães, L.M.; Chaves, J.T.L.; Bertino, A.M.P. Yield of onion in soil with cattle manure and nitrogen. Rev. Bras. Eng. Agric. Ambient. 2020, 24, 149–153. [Google Scholar] [CrossRef] [Green Version]
- Cecílio Filho, A.B.; Marcolini, M.W.; May, A.; Barbosa, J.C. Produtividade e classificação de bulbos de cebola em função da fertilização nitrogenada e potássica, em semeadura direta. Científica 2010, 38, 14–22. [Google Scholar]
- Díaz-Pérez, J.C.; Bautista, J.; Gunawan, G.; Bateman, A.; Riner, C.M. Sweet onion (Allium cepa L.) as influenced by organic fertilization rate: 2. bulb yield and quality before and after storage. HortScience 2018, 53, 459–464. [Google Scholar] [CrossRef]
- Rodrigues, G.S. de O.; Grangeiro, L.C.; Chaves, J.S.S. de L.A.P.; Neto, F.B.; Medeiros, J.F.; Júnior, J.N. Onion yield as a function of nitrogen dose. Rev. Ciênc. Agrár. 2018, 41, 46–51. [Google Scholar] [CrossRef]
- Gonçalves, F.D.C.; Grangeiro, L.C.; de Sousa, V. de F.L.; Dos Santos, J.P.; de Souza, F.I.; da Silva, L.R.R. Yield and quality of densely cultivated onion cultivars as function of nitrogen fertilization. Rev. Bras. Eng. Agric. Ambient. 2019, 23, 847–851. [Google Scholar] [CrossRef]
- García, G.; Clemente-Moreno, M.J.; Díaz-Vivancos, P.; García, M.; Hernández, J.A. The apoplastic and symplastic antioxidant system in onion: Response to long-term salt stress. Antioxidants 2020, 9, 67. [Google Scholar] [CrossRef] [Green Version]
- Machado, R.M.A.; Serralheiro, R.P. Soil salinity: Effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 2017, 3, 30. [Google Scholar] [CrossRef]
- Pessoa, L.G.M.; dos Santos Freire, M.B.G.; dos Santos, R.L.; Freire, F.J.; dos Santos, P.R.; Miranda, M.F.A. Saline water irrigation in semiarid region: II—Effects on growth and nutritional status of onions. Aust. J. Crop Sci. 2019, 13, 1177–1182. [Google Scholar] [CrossRef]
- Lima, M.D.B.; Bull, L.T. Produção de cebola em solo salinizado. Rev. Bras. Eng. Agric. Ambient. 2008, 12, 231–235. [Google Scholar] [CrossRef] [Green Version]
- Mangal, J.L.; Lal, S.; Hooda, P.S. Salt tolerance of the onion seed crop. J. Hortic. Sci. 1989, 64, 475–477. [Google Scholar] [CrossRef]
- Bosch Serra, A.D.; Casanova, D. Estimation of onion (Allium cepa, L.) biomass and light interception from reflectance measurements at field level. Acta Hortic. 2000, 519, 53–63. [Google Scholar] [CrossRef]
- Sta-Baba, R.; Hachicha, M.; Mansour, M.; Nahdi, H.; Ben Kheder, M. Response of Onion to Salinity. Afr. J. Plant Sci. 2010, 4, 7–12. [Google Scholar]
- Shannon, M.C.; Grieve, C.M. Tolerance of vegetable crops to salinity. Sci. Hortic. 1998, 78, 5–38. [Google Scholar] [CrossRef]
- Kadayifci, A.; Tuylu, G.I.; Ucar, Y.; Cakmak, B. Crop water use of onion (Allium cepa L.) in Turkey. Agric. Water Manag. 2005, 72, 59–68. [Google Scholar] [CrossRef]
- Pandey, P.; Irulappan, V.; Bagavathiannan, M.V.; Senthil-Kumar, M. Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front. Plant Sci. 2017, 8, 537. [Google Scholar] [CrossRef] [Green Version]
- Shoaib, A.; Meraj, S.; Nafisa; Khan, K.A.; Javaid, M.A. Influence of salinity and Fusarium oxysporum as the stress factors on morpho-physiological and yield attributes in onion. Physiol. Mol. Biol. Plants 2018, 24, 1093–1101. [Google Scholar] [CrossRef]
- Bybordi, A.; Saadat, S.; Zargaripour, P. The effect of zeolite, selenium and silicon on qualitative and quantitative traits of onion grown under salinity conditions. Arch. Agron. Soil Sci. 2018, 64, 520–530. [Google Scholar] [CrossRef]
- Abdissa, Y.; Tekalign, T.; Pant, L.M. Growth, bulb yield and quality of onion (Allium cepa L.) as influenced by nitrogen and phosphorus fertilization on vertisol I. growth attributes, biomass production and bulb yield. Afr. J. Agric. Res. 2011, 6, 3252–3258. [Google Scholar] [CrossRef]
- Lee, J.T.; Ha, I.J.; Lee, C.J.; Moon, J.S.; Cho, Y.C. Effect of N, P2O5 and K2O application rates and top dressing time on growth and yield of onion (Allium cepa L.) under spring culture in low land. Korean J. Hortic. Sci. Technol. 2004, 21, 260–266. [Google Scholar]
- Jilani, M.S.; Ghaffoor, A.; Waseem, K.; Farooqi, J.I. Effect of different levels of nitrogen on growth and yield of three onion varieties. Int. J. Agric. Biol. 2004, 6, 507–510. [Google Scholar]
- De Resende, G.M.; Costa, N.D. Effects of levels of potassium and nitrogen on yields and post-harvest conservation of onions in winter. Rev. Ceres 2014, 61, 572–577. [Google Scholar] [CrossRef] [Green Version]
- Bezabih, T.T.; Girmay, S. Nutrient use efficiency and agro-economic performance of onion (Allium cepa L.) under combined applications of N, K and S nutrients. Vegetos 2020, 33, 117–127. [Google Scholar] [CrossRef]
- Limeneh, D.F.; Beshir, H.M.; Mengistu, F.G. Nutrient uptake and use efficiency of onion seed yield as influenced by nitrogen and phosphorus fertilization. J. Plant Nutr. 2020, 43, 1229–1247. [Google Scholar] [CrossRef]
- Al-Tabbal, J.A.; Angor, M.M.; Ajo, R.Y.; Al-Fraihat, A.H.; Haddad, M.A. Effect of application rate of urea on the growth, bulb yield and quality of onion (Allium cepa L.) grown under semiarid conditions of North Jordan. Jordan J. Agric. Sci. 2017, 13, 93–102. [Google Scholar] [CrossRef]
- Messele, B. Effects of Nitrogen and Phosphorus Rates on Growth, Yield, and Quality of Onion (Allium cepa L.) At Menschen Für Menschen Demonstration Site, Harar, Ethiopia. Agric. Res. Technol. Open Access J. 2016, 1. [Google Scholar] [CrossRef]
- Nasreen, S.; Haque, M.; Hossain, M.; Farid, A. Nutrient uptake and yield of onion as influenced by nitrogen and sulphur fertilization. Bangladesh J. Agric. Res. 2008, 32, 413–420. [Google Scholar] [CrossRef] [Green Version]
- Walters, D.R.; Bingham, I.J. Influence of nutrition on disease development caused by fungal pathogens: Implications for plant disease control. Ann. Appl. Biol. 2007, 151, 307–324. [Google Scholar] [CrossRef]
- Marschner, P. Mineral Nutrition of Higher Plants; Academic Press: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Díaz-Pérez, J.C.; Purvis, A.C.; Paulk, J.T. Bolting, yield, and bulb decay of sweet onion as affected by nitrogen fertilization. J. Am. Soc. Hortic. Sci. 2003, 128, 144–149. [Google Scholar] [CrossRef] [Green Version]
- Pasternak, D.; De Malach, Y.; Borovic, I. Irrigation with brackish water under desert conditions I. Problems and solutions in production of onions (Allium cepa L.). Agric. Water Manag. 1984, 9, 225–235. [Google Scholar] [CrossRef]
- Al-Gaadi, K.A.; Hassaballa, A.A.; Tola, E.; Kayad, A.G.; Madugundu, R.; Alblewi, B.; Assiri, F. Prediction of potato crop yield using precision agriculture techniques. PLoS ONE 2016, 11, e0162219. [Google Scholar] [CrossRef]
- Venancio, L.P.; Mantovani, E.C.; do Amaral, C.H.; Usher Neale, C.M.; Gonçalves, I.Z.; Filgueiras, R.; Campos, I. Forecasting corn yield at the farm level in Brazil based on the FAO-66 approach and soil-adjusted vegetation index (SAVI). Agric. Water Manag. 2019, 225. [Google Scholar] [CrossRef]
- Nagy, A.; Szabó, A.; Adeniyi, O.D.; Tamás, J. Wheat Yield Forecasting for the Tisza River Catchment Using Landsat 8 NDVI and SAVI Time Series and Reported Crop Statistics. Agronomy 2021, 11, 652. [Google Scholar] [CrossRef]
Geometry of Lens | Sensors | Bands | Spectral Wavebands (nm) | Central Band Wavelength [nm] | Bandwidth [nm] | |
---|---|---|---|---|---|---|
Focal length (fixed lens) 9.6 mm Dimension 6.66mm × 5.32mm 1.3 Megapixel CMOS 4:3 format 1280 × 1024 pixels Pixel size 4.8 microns Angle of View (W × H) 38.26° × 30.97° | Master (0) | Near-infrared (NIR1) | 790–810 | 800 | 10 | |
1 | Blue | 480–500 | 490 | 10 | ||
2 | Green | 540–560 | 550 | 10 | ||
3 | Red | 670–690 | 680 | 10 | ||
4 | Red edge | 710–730 | 720 | 10 | ||
5 | Near-infrared (NIR2) | 880–920 | 900 | 20 | ||
Date | Take-off time [UTC+1] | Total duration [min] | Flight height [a.g.l.] | Speed [m s−1] | Sidelap and Overlap [%] | |
2019/10/30 | 11:30 am | 20 | 30 m | 2.5 | 80 | |
2019/11/29 | 12:00 am | 19 | 30 m | 2.5 | 80 | |
2020/01/31 | 10:30 am | 19 | 30 m | 2.5 | 80 |
EC [µS cm−1] | NH4+-N [mg kg−1] | NO3−-N [mg kg−1] | |
---|---|---|---|
N150 | 286.8c | 7.3c | 38.8c |
N180 | 394.5b | 17.1b | 58.4b |
N210 | 1002.8a | 37.8a | 168.2a |
One-way ANOVA | |||
F-value | 680.5 | 238.0 | 51.0 |
p-value | <0.001 | <0.001 | <0.001 |
30 October | 29 November | 31 January | Onion Harvested [q ha−1] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Plot ID | SAVI | Onion Cover [m2] | Plot ID | SAVI | Onion Cover [m2] | Plot ID | SAVI | Onion Cover [m2] | ||||
Mean | St. Dev | Mean | St. Dev | Mean | St. Dev | |||||||
(1) N150 | 0.006 | 0.005 | 5.79 | (1) N150 | 0.19 | 0.030 | 9.55 | (1) N150 | 0.36 | 0.055 | 9.65 | 692 |
(2) N180 | 0.005 | 0.005 | 6.86 | (2) N180 | 0.20 | 0.025 | 13.24 | (2) N180 | 0.40 | 0.050 | 12.68 | 890 |
(3) N210 | 0.001 | 0.004 | 4.89 | (3) N210 | 0.17 | 0.026 | 11.05 | (3) N210 | 0.36 | 0.051 | 11.91 | 580 |
(4) N210 | 0.010 | 0.006 | 6.46 | (4) N210 | 0.23 | 0.027 | 13.77 | (4) N210 | 0.41 | 0.036 | 17.01 | 628 |
(5) N180 | 0.011 | 0.006 | 7.49 | (5) N180 | 0.23 | 0.023 | 15.35 | (5) N180 | 0.43 | 0.040 | 18.60 | 860 |
(6) N150 | 0.001 | 0.006 | 3.75 | (6) N150 | 0.19 | 0.029 | 8.70 | (6) N150 | 0.41 | 0.062 | 11.05 | 676 |
(7) N150 | 0.001 | 0.005 | 1.77 | (7) N150 | 0.11 | 0.035 | 3.07 | (7) N150 | 0.38 | 0.052 | 8.40 | 708 |
(8) N210 | 0.001 | 0.006 | 2.11 | (8) N210 | 0.17 | 0.030 | 7.41 | (8) N210 | 0.49 | 0.090 | 12.67 | 648 |
(9) N180 | 0.001 | 0.006 | 2.76 | (9) N180 | 0.23 | 0.034 | 12.0 | (9) N180 | 0.53 | 0.060 | 16.01 | 868 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Messina, G.; Praticò, S.; Badagliacca, G.; Di Fazio, S.; Monti, M.; Modica, G. Monitoring Onion Crop “Cipolla Rossa di Tropea Calabria IGP” Growth and Yield Response to Varying Nitrogen Fertilizer Application Rates Using UAV Imagery. Drones 2021, 5, 61. https://doi.org/10.3390/drones5030061
Messina G, Praticò S, Badagliacca G, Di Fazio S, Monti M, Modica G. Monitoring Onion Crop “Cipolla Rossa di Tropea Calabria IGP” Growth and Yield Response to Varying Nitrogen Fertilizer Application Rates Using UAV Imagery. Drones. 2021; 5(3):61. https://doi.org/10.3390/drones5030061
Chicago/Turabian StyleMessina, Gaetano, Salvatore Praticò, Giuseppe Badagliacca, Salvatore Di Fazio, Michele Monti, and Giuseppe Modica. 2021. "Monitoring Onion Crop “Cipolla Rossa di Tropea Calabria IGP” Growth and Yield Response to Varying Nitrogen Fertilizer Application Rates Using UAV Imagery" Drones 5, no. 3: 61. https://doi.org/10.3390/drones5030061
APA StyleMessina, G., Praticò, S., Badagliacca, G., Di Fazio, S., Monti, M., & Modica, G. (2021). Monitoring Onion Crop “Cipolla Rossa di Tropea Calabria IGP” Growth and Yield Response to Varying Nitrogen Fertilizer Application Rates Using UAV Imagery. Drones, 5(3), 61. https://doi.org/10.3390/drones5030061