Automatic Volume Calculation and Mapping of Construction and Demolition Debris Using Drones, Deep Learning, and GIS
Abstract
:1. Introduction
2. Background
2.1. Construction and Demolition Debris Management
2.2. Literature Review
3. System Design and Development
3.1. System Overview
3.2. Aerial Image Collection and Photogrammetry
3.3. Point Cloud Feature Image Generation
3.4. Pixelwise Segmentation Models and Label Image Generation
3.5. C&D Debris Extraction, Measurement, Modeling, and Mapping
4. Experiments and Results
4.1. Experimental Site and Data Set Preparation
4.2. Image Segmentation Model Training, Testing and Comparison
4.2.1. Model Training
4.2.2. Model Testing
4.3. Concrete Debris Extraction, Measurement, and Modeling
5. Discussion
5.1. P2O-Feature Image and GSD Parameter Analysis in Segmentation Performance
5.2. Screenshot Feature Image and Point Cloud Display Size Parameter Analysis in Measurement Performance
5.3. Benefits for Construction Waste Management Practice
5.4. Limitations and Recommendations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CEMBUREAU Activity Report. 2020. Available online: https://www.cembureau.eu/media/m2ugw54y/cembureau-2020-activity-report.pdf (accessed on 18 July 2021).
- CEMBUREAU Activity Report. 2019. Available online: https://cembureau.eu/media/clkdda45/activity-report-2019.pdf (accessed on 19 July 2021).
- Mohammed, T.U.; Hasnat, A.; Awal, M.A.; Bosunia, S.Z. Recycling of Brick Aggregate Concrete as Coarse Aggregate. J. Mater. Civ. Eng. 2015, 27, B4014005. [Google Scholar] [CrossRef]
- De Brito, J.; Silva, R. Current Status on the Use of Recycled Aggregates in Concrete: Where Do We Go from Here? RILEM Tech. Lett. 2016, 1, 1–5. [Google Scholar] [CrossRef]
- Eurostat Waste Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Waste_statistics#Total_waste_generation (accessed on 18 July 2021).
- Wu, B.; Yu, Y.; Chen, Z.; Zhao, X. Shape Effect on Compressive Mechanical Properties of Compound Concrete Containing Demolished Concrete Lumps. Constr. Build. Mater. 2018, 187, 50–64. [Google Scholar] [CrossRef]
- Zhao, W.; Rotter, S. The Current Situation of Construction & Demolition Waste Management in China. In Proceedings of the 2008 2nd International Conference on Bioinformatics and Biomedical Engineering, Shanghai, China, 16–18 May 2008; pp. 4747–4750. [Google Scholar]
- Zheng, L.; Wu, H.; Zhang, H.; Duan, H.; Wang, J.; Jiang, W.; Dong, B.; Liu, G.; Zuo, J.; Song, Q. Characterizing the Generation and Flows of Construction and Demolition Waste in China. Constr. Build. Mater. 2017, 136, 405–413. [Google Scholar] [CrossRef]
- Islam, R.; Nazifa, T.H.; Yuniarto, A.; Shanawaz Uddin, A.S.M.; Salmiati, S.; Shahid, S. An Empirical Study of Construction and Demolition Waste Generation and Implication of Recycling. Waste Manag. 2019, 95, 10–21. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency Sustainable Management of Construction and Demolition Materials. Available online: https://www.epa.gov/smm/sustainable-management-construction-and-demolition-materials (accessed on 19 July 2021).
- Shenzhen Housing and Construction Bureau Shenzhen Construction Waste Management Methods. Available online: http://www.sz.gov.cn/cn/xxgk/zfxxgj/zcfg/szsfg/content/post_8201973.html (accessed on 9 April 2022).
- Biotto, G.; Silvestri, S.; Gobbo, L.; Furlan, E.; Valenti, S.; Rosselli, R. GIS, Multi-criteria and Multi-factor Spatial Analysis for the Probability Assessment of the Existence of Illegal Landfills. Int. J. Geogr. Inf. Sci. 2009, 23, 1233–1244. [Google Scholar] [CrossRef]
- Silvestri, S.; Omri, M. A Method for the Remote Sensing Identification of Uncontrolled Landfills: Formulation and Validation. Int. J. Remote Sens. 2008, 29, 975–989. [Google Scholar] [CrossRef]
- Yan, W.Y.; Mahendrarajah, P.; Shaker, A.; Faisal, K.; Luong, R.; Al-Ahmad, M. Analysis of Multi-Temporal Landsat Satellite Images for Monitoring Land Surface Temperature of Municipal Solid Waste Disposal Sites. Environ. Monit. Assess. 2014, 186, 8161–8173. [Google Scholar] [CrossRef]
- Ashtiani, M.Z.; Muench, S.T.; Gent, D.; Uhlmeyer, J.S. Application of Satellite Imagery in Estimating Stockpiled Reclaimed Asphalt Pavement (RAP) Inventory: A Washington State Case Study. Constr. Build. Mater. 2019, 217, 292–300. [Google Scholar] [CrossRef]
- Jiang, Y.; Bai, Y. Low–High Orthoimage Pairs-Based 3D Reconstruction for Elevation Determination Using Drone. J. Constr. Eng. Manag. 2021, 147, 04021097. [Google Scholar] [CrossRef]
- Park, J.W.; Yeom, D.J. Method for Establishing Ground Control Points to Realize UAV-Based Precision Digital Maps of Earthwork Sites. J. Asian Archit. Build. Eng. 2021, 21, 110–119. [Google Scholar] [CrossRef]
- Kavaliauskas, P.; Židanavičius, D.; Jurelionis, A. Geometric Accuracy of 3D Reality Mesh Utilization for BIM-Based Earthwork Quantity Estimation Workflows. ISPRS Int. J. Geo-Inf. 2021, 10, 399. [Google Scholar] [CrossRef]
- Elkhrachy, I. Accuracy Assessment of Low-Cost Unmanned Aerial Vehicle (UAV) Photogrammetry. Alex. Eng. J. 2021, 60, 5579–5590. [Google Scholar] [CrossRef]
- Jiang, Y.; Bai, Y. Determination of Construction Site Elevations Using Drone Technology. In Proceedings of the Construction Research Congress 2020, Tempe, Arizona, 8–10 March 2020; American Society of Civil Engineers: Reston, VA, USA, 2020; pp. 296–305. [Google Scholar]
- Han, S.; Jiang, Y. Construction Site Top-View Generation Using Drone Imagery: The Automatic Stitching Algorithm Design and Application. In Proceedings of the The 12th International Conference on Construction in the 21st Century (CITC-12), Amman, Jordan, 16–19 May 2022; pp. 326–334. [Google Scholar]
- Jiang, Y.; Han, S.; Bai, Y. Building and Infrastructure Defect Detection and Visualization Using Drone and Deep Learning Technologies. J. Perform. Constr. Facil. 2021, 35, 04021092. [Google Scholar] [CrossRef]
- Seo, J.; Duque, L.; Wacker, J. Drone-Enabled Bridge Inspection Methodology and Application. Autom. Constr. 2018, 94, 112–126. [Google Scholar] [CrossRef]
- Chen, K.; Reichard, G.; Akanmu, A.; Xu, X. Geo-Registering UAV-Captured Close-Range Images to GIS-Based Spatial Model for Building Façade Inspections. Autom. Constr. 2021, 122, 103503. [Google Scholar] [CrossRef]
- Chen, K.; Reichard, G.; Xu, X.; Akanmu, A. Automated Crack Segmentation in Close-Range Building Façade Inspection Images Using Deep Learning Techniques. J. Build. Eng. 2021, 43, 102913. [Google Scholar] [CrossRef]
- Yeh, C.C.; Chang, Y.L.; Alkhaleefah, M.; Hsu, P.H.; Eng, W.; Koo, V.C.; Huang, B.; Chang, L. YOLOv3-Based Matching Approach for Roof Region Detection from Drone Images. Remote Sens. 2021, 13, 127. [Google Scholar] [CrossRef]
- Jiang, Y.; Han, S.; Bai, Y. Scan4Façade: Automated As-Is Façade Modeling of Historic High-Rise Buildings Using Drones and AI. J. Archit. Eng. 2022, 28, 04022031. [Google Scholar] [CrossRef]
- Mishra, B.; Garg, D.; Narang, P.; Mishra, V. Drone-Surveillance for Search and Rescue in Natural Disaster. Comput. Commun. 2020, 156, 1–10. [Google Scholar] [CrossRef]
- Kyrkou, C.; Theocharides, T. EmergencyNet: Efficient Aerial Image Classification for Drone-Based Emergency Monitoring Using Atrous Convolutional Feature Fusion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1687–1699. [Google Scholar] [CrossRef]
- Kyrkou, C.; Theocharides, T. Deep-Learning-Based Aerial Image Classification for Emergency Response Applications Using Unmanned Aerial Vehicles. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, 16–17 June 2019; pp. 517–525. [Google Scholar]
- Takahashi, N.; Wakutsu, R.; Kato, T.; Wakaizumi, T.; Ooishi, T.; Matsuoka, R. Experiment on UAV Photogrammetry and Terrestrial Laser Scanning for ICT-Integrated Construction. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-2/W6, 371–377. [Google Scholar] [CrossRef]
- Han, S.; Jiang, Y.; Bai, Y. Fast-PGMED: Fast and Dense Elevation Determination for Earthwork Using Drone and Deep Learning. J. Constr. Eng. Manag. 2022, 148, 04022008. [Google Scholar] [CrossRef]
- Haur, C.J.; Kuo, L.S.; Fu, C.P.; Hsu, Y.L.; Heng, C. Da Feasibility Study on UAV-Assisted Construction Surplus Soil Tracking Control and Management Technique. IOP Conf. Ser. Mater. Sci. Eng. 2018, 301, 012145. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, X.; Mu, X.; Wang, Z.; Tian, R.; Wang, X.; Liu, X. Recyclable Waste Image Recognition Based on Deep Learning. Resour. Conserv. Recycl. 2021, 171, 105636. [Google Scholar] [CrossRef]
- Davis, P.; Aziz, F.; Newaz, M.T.; Sher, W.; Simon, L. The Classification of Construction Waste Material Using a Deep Convolutional Neural Network. Autom. Constr. 2021, 122, 103481. [Google Scholar] [CrossRef]
- Chen, J.; Lu, W.; Xue, F. “Looking beneath the Surface”: A Visual-Physical Feature Hybrid Approach for Unattended Gauging of Construction Waste Composition. J. Environ. Manag. 2021, 286, 112233. [Google Scholar] [CrossRef]
- Wang, Z.; Li, H.; Zhang, X. Construction Waste Recycling Robot for Nails and Screws: Computer Vision Technology and Neural Network Approach. Autom. Constr. 2019, 97, 220–228. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, Y.; Yang, Z.; Gong, H. Computer Vision Based Two-Stage Waste Recognition-Retrieval Algorithm for Waste Classification. Resour. Conserv. Recycl. 2021, 169, 105543. [Google Scholar] [CrossRef]
- Jiang, Y.; Han, S.; Bai, Y. Development of a Pavement Evaluation Tool Using Aerial Imagery and Deep Learning. J. Transp. Eng. Part B Pavements 2021, 147, 04021027. [Google Scholar] [CrossRef]
- Jiang, Y.; Bai, Y.; Han, S. Determining Ground Elevations Covered by Vegetation on Construction Sites Using Drone-Based Orthoimage and Convolutional Neural Network. J. Comput. Civ. Eng. 2020, 34, 04020049. [Google Scholar] [CrossRef]
- Jiang, Y. Remote Sensing and Neural Network-Driven Pavement Evaluation: A Review. In Proceedings of the 12th International Conference on Construction in the 21st Century (CITC-12), Amman, Jordan, 16–19 May 2022; pp. 335–345. [Google Scholar]
- Jiang, Y.; Han, S.; Li, D.; Bai, Y.; Wang, M. Automatic Concrete Sidewalk Deficiency Detection and Mapping with Deep Learning. Expert Syst. Appl. 2022, 207, 117980. [Google Scholar] [CrossRef]
- Autodesk 3D View. Available online: https://help.autodesk.com/view/RECAP/ENU/?guid=Reality_Capture_View_and_Navigate_Point_Cloud_Color_Settings_3D_View_html (accessed on 22 June 2021).
- OpenCV Smoothing Images. Available online: https://docs.opencv.org/3.4/dc/dd3/tutorial_gausian_median_blur_bilateral_filter.html (accessed on 22 June 2021).
- Jiang, Y. Demo of Concrete Debris Measurement and Mapping. Available online: https://www.yuhanjiang.com/research/UCPD/CDWM/CD (accessed on 27 August 2022).
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2015; Volume 9351, pp. 234–241. ISBN 9783319245737. [Google Scholar]
- Zhi, X. Implementation of Deep Learning Framework—Unet, Using Keras. Available online: https://github.com/zhixuhao/unet (accessed on 1 July 2020).
- Jiang, Y.; Han, S.; Bai, Y. Construction Site Segmentation Using Drone-Based Ortho-Image and Convolutional Encoder-Decoder Network Model. In Proceedings of the Construction Research Congress 2022, Arlington, VA, USA, 7–12 March 2022; American Society of Civil Engineers: Reston, VA, USA, 2022; pp. 1096–1105. [Google Scholar]
- Haeberli, P.; Voorhies, D. Image Processing by Interp and Extrapolation. Available online: http://www.graficaobscura.com/interp/index.html (accessed on 28 July 2021).
- OpenCV Contours in OpenCV. Available online: https://docs.opencv.org/3.4/d3/d05/tutorial_py_table_of_contents_contours.html (accessed on 9 November 2020).
- Zainun, N.Y.; Rahman, I.A.; Rothman, R.A. Mapping Of Construction Waste Illegal Dumping Using Geographical Information System (GIS). IOP Conf. Ser. Mater. Sci. Eng. 2016, 160, 012049. [Google Scholar] [CrossRef]
- Wu, H.; Wang, J.; Duan, H.; Ouyang, L.; Huang, W.; Zuo, J. An Innovative Approach to Managing Demolition Waste via GIS (Geographic Information System): A Case Study in Shenzhen City, China. J. Clean. Prod. 2016, 112, 494–503. [Google Scholar] [CrossRef]
- Correia, J.M.F.; de Oliveira Neto, G.C.; Leite, R.R.; da Silva, D. Plan to Overcome Barriers to Reverse Logistics in Construction and Demolition Waste: Survey of the Construction Industry. J. Constr. Eng. Manag. 2021, 147, 04020172. [Google Scholar] [CrossRef]
Task (Reference) | Objects | Model | Image Size |
---|---|---|---|
Waste image classification [34] | Cardboard, glass, metal, paper, plastic, and trash | ResNet18 | 256 × 256 pixels |
Construction waste material classification (image captured above trash bin) [35] | Timber, plastic, brick and concrete, carboard, and polystyrene | VGGNet | 224 × 224 pixels |
Truckload image classification (image captured above waste bulks) [36] | Inert (e.g., concrete and bricks) and non-inert materials (e.g., wood, plastic, and bamboo) | DenseNet169 | - |
Nails and screws recycling with a robot on construction sites [37] | Nails and screws | Faster R-CNN | - |
Waste classification for an automatic sorting machine [38] | 13 categories of municipal solid waste | VGGNet | 160 × 160 pixels |
Blocks | Layers (Kernel Size) | Strides | Padding | Filters | Activations | Blocks | Layers (Kernel Size) | Strides | Padding | Filters | Activations |
---|---|---|---|---|---|---|---|---|---|---|---|
Input | input_1 | - | - | - | - | Decoder | conv2d_4 (3 × 3) | 1 | same | 256 | ReLU |
Encoder | conv2d_1 (3 × 3) | 1 | same | 64 | ReLU | up_sampling2d_1 (2 × 2) | 1 | - | - | - | |
max_pooling2d_1 (2 × 2) | 2 | same | - | - | conv2d_5 (3 × 3) | 1 | same | 128 | ReLU | ||
conv2d_2 (3 × 3) | 1 | same | 128 | ReLU | up_sampling2d_2 (2 × 2) | 1 | - | - | - | ||
max_pooling2d_2 (2 × 2) | 2 | same | - | - | conv2d_6 (3 × 3) | 1 | same | 64 | ReLU | ||
conv2d_3 (3 × 3) | 1 | same | 256 | ReLU | up_sampling2d_3 (2 × 2) | 1 | - | - | - | ||
max_pooling2d_3 (2 × 2) | 2 | same | - | - | Output | conv2d_7 (3 × 3) | 1 | same | 1 | Sigmoid |
U-Net | Encoder-Decoder | Encoder-Decoder (Alternative Option) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Training | Testing | Training | Testing | Training | Testing | ||||||||||
Performance | wc3 | wc2 | wc1 | soil2 | soil1 | wc3 | wc2 | wc1 | soil2 | soil1 | wc3 | wc2 | wc1 | soil2 | soil1 |
Pixel Accuracy | 0.9977 | 0.9969 | 0.9992 | 0.9886 | 0.9794 | 0.9914 | 0.9931 | 0.9954 | 0.9770 | 0.9733 | 0.9898 | 0.9892 | 0.9944 | 0.9751 | 0.9724 |
Non-WC IoU | 0.9970 | 0.9949 | 0.9991 | 0.9872 | 0.9747 | 0.9886 | 0.9886 | 0.9950 | 0.9742 | 0.9674 | 0.9865 | 0.9826 | 0.9940 | 0.9723 | 0.9665 |
WC IoU | 0.9911 | 0.9921 | 0.9898 | 0.9065 | 0.9006 | 0.9669 | 0.9824 | 0.9425 | 0.8221 | 0.8728 | 0.9601 | 0.9725 | 0.9286 | 0.8008 | 0.8646 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Huang, Y.; Liu, J.; Li, D.; Li, S.; Nie, W.; Chung, I.-H. Automatic Volume Calculation and Mapping of Construction and Demolition Debris Using Drones, Deep Learning, and GIS. Drones 2022, 6, 279. https://doi.org/10.3390/drones6100279
Jiang Y, Huang Y, Liu J, Li D, Li S, Nie W, Chung I-H. Automatic Volume Calculation and Mapping of Construction and Demolition Debris Using Drones, Deep Learning, and GIS. Drones. 2022; 6(10):279. https://doi.org/10.3390/drones6100279
Chicago/Turabian StyleJiang, Yuhan, Yilei Huang, Jingkuang Liu, Dapeng Li, Shuiyuan Li, Weijing Nie, and In-Hun Chung. 2022. "Automatic Volume Calculation and Mapping of Construction and Demolition Debris Using Drones, Deep Learning, and GIS" Drones 6, no. 10: 279. https://doi.org/10.3390/drones6100279
APA StyleJiang, Y., Huang, Y., Liu, J., Li, D., Li, S., Nie, W., & Chung, I. -H. (2022). Automatic Volume Calculation and Mapping of Construction and Demolition Debris Using Drones, Deep Learning, and GIS. Drones, 6(10), 279. https://doi.org/10.3390/drones6100279