Precise Quantification of Land Cover before and after Planned Disturbance Events with UAS-Derived Imagery
Abstract
:1. Introduction
Research Objectives
2. Materials and Methods
2.1. Study Area
2.1.1. Prescribed Prairie Burn Sites
2.1.2. Selective Timber Harvest Sites
2.2. UAS and Sensors Combination
Image Sensor | Weight | Lens | Focal Length | Mega-Pixels | Ground Sample Distance (GSD) | DJI Sensor | Weight |
---|---|---|---|---|---|---|---|
Sony A6000 | ~0.5 kg (~1 lb) | Voigtländer Color Skopar Aspherical | 21 mm | 24.3 MP | 2–3 cm per pixel | Zenmuse XT2 (13 mm) | ~0.6 kg (~1.3 lbs) |
Georeferencing System | Uncorrected PPK Accuracy | Max Corrected PPK Accuracy | Weight | Dimensions (mm) | UAS Positioning | GPS Accuracy |
---|---|---|---|---|---|---|
Field of View GeoSnap PPK | 30 cm Vertical/ Horizontal | 2 cm Vertical/ Horizontal | 206 g (~0.5 lb) | 90 × 50 × 28 | A3 GPS Compass Pro | 50 cm Vertical, 150 cm Horizontal |
2.3. Data Collection
2.3.1. Prairie Burn Site Testing
2.3.2. Timber Harvest Site Testing
2.3.3. Data Processing
2.4. Data Classification
2.4.1. Image Segmentation
2.4.2. Classification Schema
2.4.3. Sample Collection, Classification, and Area Calculations
2.4.4. Accuracy Assessment and Confusion Matrix
2.5. Significance Testing
3. Results
3.1. Objective 1: Data Procurement
3.1.1. Optimized Data Collection Parameters
3.1.2. Resulting Georeferenced Orthomosaics
3.2. Objective 2: Land Cover Classification
3.3. Objective III: Significance Testing
4. Discussion
4.1. Objective 1—Part 1: Data Collection Parameters
4.2. Objective 1—Part 2: Data Processing Parameters
4.3. Objective 2: Data Classification Parameters
4.4. Objective 3: Significance Testing
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kuppinger, D.M.; Jenkins, M.A.; White, P.S. Predicting the post-fire establishment and persistence of an invasive tree species across a complex landscape. Biol. Invasions 2010, 12, 3473–3484. [Google Scholar] [CrossRef]
- O’Hara, K.L. What is close-to-nature silviculture in a changing world? Forestry 2016, 89, 1–6. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Botelho, H.S. A review of prescribed burning effectiveness in fire hazard reduction. Int. J. Wildland Fire 2003, 12, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Rousselet, G. Classification of Post-Wildfire Aerial Imagery Using Convolutional Neural Networks: A Study of Machine Learning and Resampling Techniques to Assist Post-Wildfire Efforts. Available online: https://www.diva-portal.org/smash/get/diva2:1353041/FULLTEXT01.pdf (accessed on 6 January 2021).
- Anderson, J.R.; Hardy, E.E.; Roach, J.T.; Witmer, R.E. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; U.S. Government Printing Office: Washington, DC, USA, 1976.
- Lister, A.J.; Andersen, H.; Frescino, T.; Gatziolis, D.; Healey, S.; Heath, L.S.; Liknes, G.C.; McRoberts, R.; Moisen, G.G.; Nelson, M.; et al. Use of remote sensing data to improve the efficiency of national forest inventories: A case study from the united states national forest inventory. Forests 2020, 11, 1364. [Google Scholar] [CrossRef]
- Frayer, W.E.; Furnival, G.M. Forest survey sampling designs: A history. J. For. 1999, 97, 4–10. [Google Scholar]
- King, D.J. Airborne remote sensing in forestry: Sensors, analysis and applications. For. Chron. 2000, 76, 859–876. [Google Scholar] [CrossRef] [Green Version]
- Anderson, K.; Gaston, K.J. Lightweight Unmanned Aerial Vehicles Will Revolutionize Spatial Ecology. Front. Ecol. Environ. 2013, 11, 138–146. [Google Scholar] [CrossRef] [Green Version]
- Ruwaimana, M.; Satyanarayana, B.; Otero, V.; Muslim, A.M.; Muhammad Syafiq, A.; Ibrahim, S.; Raymaekers, D.; Koedam, N.; Dahdouh-Guehbas, F. The advantages of using drones over space-borne imagery in the mapping of mangrove forests. PLoS ONE 2018, 13, e0200288. [Google Scholar] [CrossRef] [Green Version]
- Sakumara, C. Seeing a Better World from Space. In Proceedings of the 11th Annual Purdue GIS Day Conference, West Lafayette, IN, USA, 7 November 2019. [Google Scholar]
- Asenova, M. GIS-Based Analysis of the Tree Health Problems Using UAV Images and Satellite Data. Surv. Geol. Min. Ecol. Manag. 2018, 18, 813–820. [Google Scholar] [CrossRef]
- Berie, H.T.; Burud, I. Application of Unmanned Aerial Vehicles in Earth Resources Monitoring: Focus on Evaluating Potentials for Forest Monitoring in Ethiopia. Eur. J. Remote Sens. 2018, 51, 326–335. [Google Scholar] [CrossRef] [Green Version]
- Merkert, R.; Bushell, J. Managing the drone revolution: A systematic literature review into the current use of airborne drones and future strategic directions for their effective control. J. Air Transp. Manag. 2020, 89, 101929. [Google Scholar] [CrossRef] [PubMed]
- Buters, T.M.; Bateman, P.W.; Robinson, T.; Belton, D.; Dixon, K.W.; Cross, A.T. Methodological Ambiguity and Inconsistency Constrain Unmanned Aerial Vehicles as A Silver Bullet for Monitoring Ecological Restoration. Remote Sens. 2019, 11, 1180. [Google Scholar] [CrossRef] [Green Version]
- Getzin, S.; Nuske, R.S.; Wiegand, K. Using Unmanned Aerial Vehicles (UAV) to Quantify Spatial Gap Patterns in Forests. Remote Sens. 2014, 6, 6988–7004. [Google Scholar] [CrossRef] [Green Version]
- Guerra-Hernández, J.; González-Ferreiro, E.; Monleón, V.; Faias, S.; Tomé, M.; Díaz-Varela, R. Use of Multi-Temporal UAV-Derived Imagery for Estimating Individual Tree Growth in Pinus Pinea Stands. Forests 2017, 8, 300. [Google Scholar] [CrossRef]
- Pádua, L.; Guimarães, N.; Adão, T.; Sousa, A.; Peres, E.; Sousa, J.J. Effectiveness of Sentinel-2 in Multi-Temporal Post-Fire Monitoring When Compared with UAV Imagery. ISPRS Int. J. Geo-Inf. 2020, 9, 225. [Google Scholar] [CrossRef] [Green Version]
- White, R.A.; Bomber, M.; Hupy, J.P.; Shortridge, A. UAS-GEOBIA Approach to Sapling Identification in Jack Pine Barrens after Fire. Drones 2018, 2, 40. [Google Scholar] [CrossRef] [Green Version]
- Hassler, S.C.; Baysal-Gurel, F. Unmanned Aircraft System (UAS) Technology and Applications in Agriculture. Agronomy 2019, 9, 618. [Google Scholar] [CrossRef] [Green Version]
- Mayes, M.T.; Estes, L.D.; Gago, X.; Débats, S.R.; Caylor, K.K.; Manfreds, S.; Oudemans, P.; Ciraolo, G.; Maltese, A.; Nadal, M.; et al. Using Small Drone (UAS) Imagery to Bridge the Gap Between Field-and Satellite-Based Measurements of Vegetation Structure and Change. Am. Geophys. Union Fall Meet. 2016, 2016, B53J-05. [Google Scholar]
- Tomaštík, J.; Mokroš, M.; Surový, P.; Grznárová, A.; Merganič, J. UAV RTK/PPK Method—An Optimal Solution for Mapping Inaccessible Forested Areas? Remote Sens. 2019, 11, 721. [Google Scholar] [CrossRef] [Green Version]
- Miller, Z.M.; Hupy, J.; Chandrasekaran, A.; Shao, G.; Fei, S. Application of Postprocessing Kinematic Methods with UAS Remote Sensing in Forest Ecosystems. J. For. 2021, 119, 454–466. [Google Scholar] [CrossRef]
- Kucharczyk, M.; Hay, G.J.; Ghaffarian, S.; Hugenholtz, C.H. Geographic Object-Based Image Analysis: A Primer and Future Directions. Remote Sens. 2020, 12, 2012. [Google Scholar] [CrossRef]
- Knoth, C.; Klein, B.; Prinz, T.; Kleinebecker, T. Unmanned aerial vehicles as innovative remote sensing platforms for high-resolution infrared imagery to support restoration monitoring in cut-over bogs. Appl. Veg. Sci. 2013, 16, 509–517. [Google Scholar] [CrossRef]
- Goodbody, T.R.H.; Coops, N.C.; Hermosilla, T.; Tompalski, P.; Crawford, P. Assessing the status of forest regeneration using digital aerial photogrammetry and unmanned aerial systems. Int. J. Remote Sens. 2018, 39, 5246–5264. [Google Scholar] [CrossRef]
- Larrinaga, A.R.; Brotons, L. Greenness indices from a low-cost uav imagery as tools for monitoring post-fire forest recovery. Drones 2019, 3, 6. [Google Scholar] [CrossRef] [Green Version]
- Pádua, L.; Adão, T.; Guimarães, N.; Sousa, A.; Peres, E.; Sousa, J.J. Post-fire forestry recovery monitoring using high-resolution multispectral imagery from unmanned aerial vehicles. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2019, 42, 301–305. [Google Scholar] [CrossRef] [Green Version]
- Anderson, C.L. Examining Aspen Expansion from before and after Prescribed Burning in a Native Fescue Grassland through Geospatial Techniques. Master’s Thesis, Michigan Technological University, Houghton, MI, USA, 2019. [Google Scholar]
- Pérez-Rodríguez, L.A.; Quintano, C.; Marcos, E.; Suarez-Seoane, S.; Calvo, L.; Fernández-Manso, A. Evaluation of prescribed fires from unmanned aerial vehicles (UAVs) imagery and machine learning algorithms. Remote Sens. 2020, 12, 1295. [Google Scholar] [CrossRef] [Green Version]
- Samiappan, S.; Hathcock, L.; Turnage, G.; McCraine, C.; Pitchford, J.; Moorhead, R. Remote sensing of wildfire using a small unmanned aerial system: Post-fire mapping, vegetation recovery and damage analysis in Grand Bay, Mississippi/Alabama, USA. Drones 2019, 3, 43. [Google Scholar] [CrossRef] [Green Version]
- Simpson, J.E.; Wooster, M.J.; Smith, T.E.L.; Trivedi, M.; Vernimmen, R.R.E.; Dedi, R.; Shakti, M.; Dinata, Y. Tropical peatland burn depth and combustion heterogeneity assessed using UAV photogrammetry and airborne LiDAR. Remote Sens. 2016, 8, 1000. [Google Scholar] [CrossRef] [Green Version]
- Sill, K. Use of GIS Spatial Analysis, Remote Sensing, and Unmanned Aerial Systems in Determining the Susceptibility to Wildfires in Barber County, Kansas. Master’s Thesis, Fort Hays State University, Hays, KS, USA, 2020. [Google Scholar]
- USDA Forest Service. FS-1079 Forest Inventory and Analysis Strategic Plan. Available online: https://www.fia.fs.fed.us/library/bus-org-documents/docs/strategic-plan-docs/FIA%20Strategic%20Plan%20FS-1079.pdf (accessed on 8 January 2020).
- Hardwood Tree Improvement and Regeneration Center (HTIRC). Strategic Plan: 2017–2021; HTIRC: West Lafayette, IN, USA, 2017; Available online: https://htirc.org//wp-content/uploads/2018/08/HTIRC-Strategic-Plan-2017-2021.pdf (accessed on 8 January 2020).
- Cromwell, C.; Giampaolo, J.; Hupy, J.P.; Miller, Z.M.; Chandrasekaran, A. A systematic review of best practices for UAS data collection in forestry-related applications. Forests 2021, 12, 957. [Google Scholar] [CrossRef]
- Husson, E.; Ecke, F.; Reese, H. Comparison of manual mapping and automated object-based image analysis of non-submerged aquatic vegetation from very-high-resolution UAS images. Remote Sens. 2016, 8, 724. [Google Scholar] [CrossRef] [Green Version]
- Evans, T.P.; Green, G.M.; Carlson, L.A. Multi-scale analysis of landcover composition and landscape management of public and private lands in Indiana. In GIS and Remote Sensing Applications in Biogeography and Ecology; Millington, A.C., Walsh, S.J., Osborne, P.E., Eds.; Springer: Boston, MA, USA, 2001; pp. 271–287. [Google Scholar] [CrossRef]
- Hesseln, H. The economics of prescribed burning: A research review. For. Sci. 2000, 46, 322–334. [Google Scholar] [CrossRef]
- Brooke, J. Personal Communication; Purdue FNR: West Lafayette, IN, USA, 2021. [Google Scholar]
- Miller, Z.M.; Brooke, J. Monitoring efficacy and impacts of differing prescribed fire seasonality with UAS. In Proceedings of the Wildlife Society Annual Conference, Morgan Monroe State Forest, Martinsville, IN, USA, 23–24 September 2019. [Google Scholar]
- Fralish, J.S. The Central Hardwood Forest: Its Boundaries and Physiographic Provinces; Technical Report for U.S.; Department of Agriculture, Forest Service: Saint Paul, MN, USA, 2003.
- Pike Lumber, LLC. Volz Tract #125–Forest Stewardship Management Plan. 2017. Available online: https://www.pikelumber.com/forestry/ (accessed on 6 January 2020).
- Halpern, C.B.; Halaj, J.; Evans, S.A.; Dovčiak, M. Level and pattern of overstory retention interact to shape long-term responses of understories to timber harvest. Ecol. Appl. 2012, 22, 2049–2064. [Google Scholar] [CrossRef]
- DJI. Matrice 600 Pro: Product Information–Specifications. Available online: https://www.dji.com/matrice600-pro/info#specs (accessed on 8 January 2021).
- Field of View, LLC. GeoSnap PPK–Product Sheet. Available online: https://static1.squarespace.com/static/5d0d06f497c0e80001c6ca18/t/5ebdab9213269e6b5b3a3fd9/1589488532053/GeoSnap_PPK_Product_Sheet_rev12_web.pdf (accessed on 8 January 2021).
- Sony. Sony A6000 Specifications. Available online: https://www.bhphotovideo.com/c/product/1029860-REG/sony_ilce6000l_b_alpha_a6000_mirrorless_digital.html (accessed on 8 January 2021).
- Boon, M.A.; Drijfhout, A.P.; Tesfamichael, S. Comparison of a fixed-wing and multi-rotor UAV for environmental mapping applications: A case study. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2017, 42, 47–54. [Google Scholar] [CrossRef] [Green Version]
- DJI. Zenmuse XT2 User Manual. Available online: https://dl.djicdn.com/downloads/Zenmuse%20XT%202/Zenmuse%20XT%202%20User%20Manual%20v1.0.pdf (accessed on 8 January 2021).
- Pix4D. Support–Initial Processing–Calibration. Available online: https://support.pix4d.com/hc/en-us/articles/205327965-Menu-Process-Processing-Options-1-Initial-Processing-Calibration (accessed on 8 January 2021).
- Seifert, E.; Seifert, S.; Vogt, H.; Drew, D.; van Aardt, J.; Kunneke, A.; Seifert, T. Influence of drone altitude, image overlap, and optical sensor resolution on multi-view reconstruction of forest images. Remote Sens. 2019, 11, 1252. [Google Scholar] [CrossRef] [Green Version]
- Dandois, J.P.; Olano, M.; Ellis, E.C. Optimal altitude, overlap, and weather conditions for computer vision uav estimates of forest structure. Remote Sens. 2015, 7, 13895–13920. [Google Scholar] [CrossRef] [Green Version]
- Bagaram, M.B.; Giuliarelli, D.; Chirici, G.; Giannetti, F.; Barbati, A. UAV remote sensing for biodiversity monitoring: Are forest canopy gaps good covariates? Remote Sens. 2018, 10, 1397. [Google Scholar] [CrossRef]
- Díaz-Varela, R.A.; De la Rosa, R.; León, L.; Zarco-Tejada, P.J. High-resolution airborne UAV imagery to assess olive tree crown parameters using 3D photo reconstruction: Application in breeding trials. Remote Sens. 2015, 7, 4213–4232. [Google Scholar] [CrossRef] [Green Version]
- Frey, J.; Kovach, K.; Stemmler, S.; Koch, B. UAV photogrammetry of forests as a vulnerable process: A sensitivity analysis for a structure from motion RGB-image pipeline. Remote Sens. 2018, 10, 912. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, J.R.K.; Prinz, T.; Ziller, S.R.; Thiele, J.; Heringer, G.; Meira-Neto, J.A.A.; Buttschardt, T.K. Open-source processing and analysis of aerial imagery acquired with a low-cost unmanned aerial system to support invasive plant management. Front. Environ. Sci. 2017, 5, 44. [Google Scholar] [CrossRef] [Green Version]
- Fraser, B.T.; Congalton, R.G. Issues in unmanned aerial systems (UAS) data collection of complex forest environments. Remote Sens. 2018, 10, 908. [Google Scholar] [CrossRef] [Green Version]
- Shahbazi, M.; Théau, J.; Ménard, P. Recent applications of unmanned aerial imagery in natural resource management. GIScience Remote Sens. 2014, 51, 339–365. [Google Scholar] [CrossRef]
- Hubbard, S.; Pak, A.; Gu, Y.; Jin, Y. UAS to support airport safety and operations: Opportunities and challenges. J. Unmanned Veh. Syst. 2017, 6, 1–17. [Google Scholar] [CrossRef] [Green Version]
- FAA. 14 CFR–Part 107: Small Unmanned Aerial Systems. Available online: https://www.ecfr.gov/current/title-14/chapter-I/subchapter-F/part-107 (accessed on 1 January 2019).
- Jurjević, L.; Gašparović, M.; Milas, A.S.; Balenović, I. Impact of UAS image orientation on accuracy of forest inventory attributes. Remote Sens. 2020, 12, 404. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Aldana-Jague, E.; Clapuyt, F.; Wilken, F.; Vanacker, V.; Van Oost, K. Evaluating the potential of post-processing kinematic (PPK) georeferencing for uav-based structure-from-motion (SfM) photogrammetry and surface change detection. Earth Surf. Dyn. 2019, 7, 807–827. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Aldana Jague, E.; Clapuyt, F.; Wilken, F.; Vanacker, V.; Oost, K. Evaluating the potential of PPK direct georeferencing for UAV-SfM photogrammetry and precise topographic mapping. Earth Surf. Dyn. Discuss. 2019, 1–34. [Google Scholar] [CrossRef]
- GISGeography, World Geodetic System (WGS84). Available online: https://gisgeography.com/wgs84-world-geodetic-system/ (accessed on 5 January 2022).
- Manfreda, S.; McCabe, M.F.; Miller, P.E.; Lucas, R.; Madrigal, V.P.; Mallinis, G.; Ben Dor, E.; Helman, D.; Estes, L.; Ciraolo, G.; et al. On the use of unmanned aerial systems for environmental monitoring. Remote Sens. 2018, 10, 641. [Google Scholar] [CrossRef] [Green Version]
- Pix4D, Support–Initial Processing–Calibrate (Image Scale and Keypoints). Available online: https://support.pix4d.com/hc/en-us/articles/202557759-Menu-Process-Processing-Options-1-Initial-Processing-General#label3 (accessed on 6 January 2021).
- Li, C.; Shao, G. Object-oriented classification of land use/cover using digital aerial orthophotography. Int. J. Remote Sens. 2012, 33, 922–938. [Google Scholar] [CrossRef]
- Al-Ali, Z.M.; Abdullah, M.M.; Asadalla, N.B.; Gholoum, M. A comparative study of remote sensing classification methods for monitoring and assessing desert vegetation using a UAV-based multispectral sensor. Environ. Monit. Assess. 2020, 192, 389. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Boardman, A.L. Next Generation of Land System Science: Integrating Meso-Scale Analysis and UAS Remote Sensing in Changing Plant Communities of the United States’ Southern Great Plains. Master’s Thesis, Oklahoma State University, Stillwater, OK, USA, 2020. [Google Scholar]
- Gibril, M.B.A.; Kalantar, B.; Al-Ruzouq, R.; Ueda, N.; Saeidi, V.; Shanableh, A.; Mansor, S.; Shafri, H.Z.M. Mapping heterogeneous urban landscapes from the fusion of digital surface model and unmanned aerial vehicle-based images using adaptive multiscale image segmentation and classification. Remote Sens. 2020, 12, 1081. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Abd-Elrahman, A.; Morton, J.; Wilhelm, V.L. Comparing fully convolutional networks, random forest, support vector machine, and patch-based deep convolutional neural networks for object-based wetland mapping using images from small unmanned aircraft system. GIScience Remote Sens. 2018, 55, 243–264. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Pande-Chhetri, R.; Abd-Elrahman, A.; Liu, T.; Morton, J.; Wilhelm, V.L. Object-based classification of wetland vegetation using very high-resolution unmanned air system imagery. Eur. J. Remote Sens. 2017, 50, 564–576. [Google Scholar] [CrossRef] [Green Version]
- Fraser, B.T.; Congalton, R.G. Evaluating the effectiveness of unmanned aerial systems (UAS) for collecting thematic map accuracy assessment reference data in New England forests. Forests 2019, 10, 24. [Google Scholar] [CrossRef] [Green Version]
- Martin, F.M.; Müllerová, J.; Borgniet, L.; Dommanget, F.; Breton, V.; Evette, A. Using single- and multi-date UAV and satellite imagery to accurately monitor invasive knotweed species. Remote Sens. 2018, 10, 1662. [Google Scholar] [CrossRef] [Green Version]
- Shao, G.F.; Tang, L.N.; Liao, J.F. Overselling overall map accuracy misinforms about research reliability. Landsc. Ecol. 2019, 34, 2487–2492. [Google Scholar] [CrossRef] [Green Version]
- Pontius, R.G., Jr.; Millones, M. Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
- Shao, G.F.; Tang, L.N.; Zhang, H. Introducing Image Classification Efficacies. IEEE Access 2021, 9, 134809–134816. [Google Scholar] [CrossRef]
- Nordén, B.; Rørstad, P.K.; Magnér, J.; Götmark, F.; Löf, M. The economy of selective cutting in recent mixed stands during restoration of temperate deciduous forest. Scand. J. For. Res. 2019, 34, 709–717. [Google Scholar] [CrossRef]
Property | Prairie Coverage | Number of Plots Burned | Total Burned Area | Burn Date | UAS Survey Dates |
---|---|---|---|---|---|
Doak (49.2 acres) | 15 acres | 5 plots | (~5 acres) | 9/19/19 | Pre and Post Burn: 9/19/19 |
Hermann (38.4 acres) | 8.9 acres | 4 plots | (~4 acres) | 10/8/19 | Pre and Post Burn: 10/8/19 |
PWA (290 acres) | 60 acres | 9 plots | (~14.7 acres) | 4/2/20 | Pre-burn: 4/1/20 Post-burn: 4/3/20 4/11/20, 4/22/20, 4/28/20, 5/1/20, 5/9/20, 5/13/20, 6/21/20, 6/26/20, 7/17/20 |
Property | # of Trees Harvested | Amount Harvested (in Board Feet) | Harvest Duration | UAS Survey Dates |
---|---|---|---|---|
Deardorff (17.3 acres) | 127 | 35,824′ | 5/8/20–5/13/20 | Pre-cut: 5/7/20 Mid-cut: 5/18/20 Post-cut: 7/2/20, 10/9/20 |
Jackson (23.6 acres) | 126 | 58,702′ | 6/11/20–8/20/20 | Pre-cut: 5/16/20 |
McAffee (27 acres) | 217 selected* | *Not yet harvested | NA | Pre-cut: 5/16/20 |
Rough (20.7 acres) | 199 | 11,268′ | 6/1/20–6/10/21 | Pre-cut: 5/18/20, 10/9/20 |
Urton (51.9 acres) | 311 | 109,209′ | 5/30/20–6/20/20 | Pre-cut: 5/22/20 |
Whiteman (56.2 acres) | 166 | 74,956′ | 5/13/20–6/25/20 | Mid-cut: 5/16/20 Post-cut: 7/9/20 |
Volz (10 acres) | 65 | 39,515′ | 5/7/20–6/25/20 | Pre-cut: 5/7/20 Mid-cut: 5/21/20 Post-cut: 7/2/20, 8/26/20 |
Category | Data Collection Parameters |
---|---|
Atmospheric Conditions | Sun angle, brightness (cloud cover), and wind |
Sensor Settings | Shutter speed, aperture, ISO, and zoom |
Mission Planning | Flight altitude, overlap/sidelap, and number of images collected outside the study area |
Subject | Parameter Tested | Notes |
---|---|---|
Sun Angle° (Takeoff time) | 48.6° (1130) & 43.2° (1315)* | Shadows present in both datasets; slightly longer shadows present in Hermann flights |
Shutter Speed | 1/1600 & 1/2500* | Slightly overexposed, difficult to see shaded areas |
Date | Takeoff | Landing | Total Duration | Number of Images | Clouds/Brightness 1 | Wind 1 |
---|---|---|---|---|---|---|
4/01/20* | 1500 | 1520 | 20 min | 303 | Scattered, sunny | Variable ~8 MPH |
4/03/20 | 1113 | 1130 | 17 min | 378 | Overcast, diffuse | Calm < 3 MPH |
4/11/20 | 1409 | 1428 | 19 min | 389 | Clear, sunny | Low < 5 MPH |
5/01/20 | 1332 | 1347 | 15 min | 310 | Clear, sunny | Variable ~5 MPH |
Site | Date | Sun Angle° (Takeoff Time) | Cloud Cover and Brightness | Wind (MPH) | Shutter Speed | Flight Altitude (AGL) | Notes |
---|---|---|---|---|---|---|---|
Volz* (Pre-cut) | 5/7/20 | (0900) | Clear, sunny | Med ~9 | 1/2500 | 400 ft | Slightly overexposed |
Deardorff* | 5/7/20 | (1230) | Clear, sunny | High ~11.5 | 1/2500 | 400 ft | Motion blur, overexposed |
McAffee* | 5/16/20 | (1115) | Broken, variable | Med ~7 | 1/2500 | 400 ft | Motion blur, inconsistent lighting |
Whiteman* | 5/16/20 | (1230) | Scattered, sunny | Low ~4.5 | 1/2500 | 400 ft | Motion blur, inconsistent lighting |
Jackson* | 5/16/20 | (1545) | Scattered, variable | High ~10 | 1/2500 | 400 ft | Motion blur, good exposure |
Rough** | 5/18/20 | (1330) | Overcast, diffuse | VRB ~3, gusting 10 | 1/2500 | 500 ft | Some blur, slightly overexposed |
Deardorff** | 5/18/20 | (1615) | Overcast, diffuse | High ~10 | 1/2500 | 500 ft | Some blur, slightly overexposed |
Volz*** (Mid-cut) | 5/21/20 | (1130) | Overcast, diffuse | Med ~8 | 1/4000 | 500 ft | Good detail, slightly underexposed |
Urton**** | 5/22/20 | (1445) | Scattered, sunny | Med ~9 | 1/4000 | 500 ft | Good detail, good exposure |
Volz***** (Post-cut) | 7/2/20 | (1145) | Clear, sunny | Med ~7 | 1/4000 | 500 ft | Good detail, good exposure |
Volz***** (Post-cut 2) | 8/26/20 | (1130) | Clear, sunny | VRB ~8, gusting 10 | 1/4000 | 500 ft | Some motion blur, good exposure |
Datum | Projected Coordinate System | Zone | Orthometric Surface | Estimated Error |
---|---|---|---|---|
World Geodetic System— 1984 revision (WGS 84) | Universal Transverse Mercator (UTM) | 16 North | Ellipsoidal | 2 cm |
CORS Site | Distance from Site | Mean Fixed Epochs | Mean Float Epochs | Constellations Used | Mean Position Uncertainty (X) | Mean Position Uncertainty (Y) | Mean Position Uncertainty (Z) |
---|---|---|---|---|---|---|---|
P775 | 6 km (3.7 mi) | 30,086 (99.9%) | 3.2 (0.012%) | GPS | 2.15 cm | 2.18 cm | 2.43 cm |
KYBO | 35 km (21.4 mi) | 23,302 (89.9%) | 4869 (10.1%) | GPS + GLONASS | 2.7 cm | 2.65 cm | 2.73 cm |
Dataset | Keypoint Image Scale | Calibration Method | Number of Calibrated Images |
---|---|---|---|
PWA pre-burn (4/1/20) | 1 | Standard | 615/621 (99%) |
1/2 | Standard | 618/621 (99%) | |
1/4 | Standard | 615/621 (99%) | |
PWA post-burn (4/3/20) | 1 | Standard | 377/378 (99%) |
PWA post-burn 2 (4/11/20) | 1 | Standard | 388/389 (99%) |
PWA post-burn 3 (5/1/20) | 1 | Standard | 309/310 (99%) |
Volz pre-cut (5/7/20) | 1 | Standard | 241/256 (94%) |
1/2 | Standard | 241/256 (94%) | |
1/4 | Standard | 239/256 (93%) | |
1/2 | Alternative | 243/256 (94%) | |
1/4 | Alternative | 239/256 (93%) | |
Volz mid-cut (5/21/20) | 1 | Standard | 149/159 (94%) |
1/2 | Standard | 151/159 (95%) | |
1/4 | Standard | 146/159 (92%) | |
1 | Alternative | 148/159 (93%) | |
1/2 | Alternative | 154/159 (97%) | |
1/4 | Alternative | 149/159 (94%) | |
Volz post-cut (7/2/20) | 1 | Standard | 155/157 (99%) |
1/2 | Standard | 156/157 (99%) | |
1/4 | Standard | 154/157 (98%) | |
1/2 | Alternative | 157/157 (100%) | |
1/4 | Alternative | 156/157 (99%) | |
Volz post-cut 2 (8/26/20) | 1 | Standard | 166/174 (95%) |
1/2 | Standard | 168/174 (96%) | |
1/4 | Standard | 163/174 (93%) | |
1/2 | Alternative | 169/174 (97%) | |
1/4 | Alternative | 163/174 (93%) |
Consideration | Subject | Recommendation | Justification |
---|---|---|---|
Atmospheric Conditions | Sun Angle/Time of Collection | Mid-morning to mid-evening | Little to no tall objects that would cause long shadows. Wider range of collection times than forested sites. |
Brightness/Cloud Cover | Bright to Diffuse/Clear to Overcast | Low vegetation height was less sensitive to overexposure from bright light. | |
Wind | 0–10 mph (med) | Motion blur less common with low vegetation height. | |
Sensor Parameters | Shutter Speed | 1/2500–1/3200 | Properly exposed image with sharp detail for given lighting conditions. |
Aperture and Focal Length | f/3.5 and 21 mm | Wide field of view for high image overlap. | |
ISO and Zoom | Auto and ∞ | Auto-balanced gain and focused images. | |
Mission Planning | Flight Altitude | 121 m AGL (400 ft) | Sufficient depth of field for sharp detail. |
Overlap/Sidelap | 80% × 80% | Ensured thorough coverage of study area. | |
Number of Boundary Images | ≥1 image | Inherently more visible ground cover than forested sites allowed for smaller outside image buffer. |
Consideration | Subject | Recommendation | Justification |
---|---|---|---|
Atmospheric Conditions | Sun Angle/Time of Collection | Mid-day | Tall objects and dense canopy restricted times of collection to highest sun angle possible. |
Brightness/Cloud Cover | Diffuse/Overcast | Tall vegetation height was more sensitive to overexposure if too bright and view into canopy gaps was better with diffuse overcast lighting. | |
Wind | ≤5 mph (low) | Motion blur more common with tall vegetation, wind needed to be minimal. | |
Sensor Parameters | Shutter Speed | 1/3200–1/4000 | Properly exposed image with sharp detail for given lighting conditions. |
Aperture and Focal Length | f/3.5 and 21 mm | Wide field of view for high image overlap. | |
ISO and Zoom | Auto and ∞ | Auto-balanced gain and focused images. | |
Mission Planning | Flight Altitude | 152 m AGL (500 ft) | Sufficient depth of field for sharp detail. |
Overlap/Sidelap | 80% × 80% | Ensured thorough coverage of study area. | |
Number of Boundary Images | ≥2 images | Commonly less visible ground cover than prairie sites necessitated larger outside image buffer. |
RB | BG | LT | GV | BV | P | UA | UE |
---|---|---|---|---|---|---|---|
BG | 0.0092 | 0.0015 | 0 | 0 | 1.1% | 85.7% | 85.5% |
LT | 0 | 0.6998 | 0 | 0 | 70.0% | 100% | 100% |
GV | 0 | 0.0035 | 0.101 | 0.0071 | 11.2% | 90.5% | 89.3% |
BV | 0.0028 | 0.0085 | 0.0056 | 0.1609 | 17.8% | 90.5% | 88.6% |
P | 1.2% | 71.3% | 10.7% | 16.8% | 1 | ||
PA | 76.5% | 98.1% | 94.7% | 95.8% | OA = 97.1% | ||
PE | 76.2% | 93.4% | 94.1% | 94.9% | MICE = 93.6% | ||
PB2 | BG | LT | GV | BV | P | UA | UE |
BG | 0.1295 | 0.0127 | 0.0076 | 0.0102 | 16% | 81% | 75.9% |
LT | 0.0121 | 0.2429 | 0 | 0 | 25.5% | 95.2% | 93.1% |
GV | 0.0128 | 0.0096 | 0.1762 | 0.0032 | 20.2% | 87.3% | 84.2% |
BV | 0.0547 | 0.0426 | 0.0122 | 0.2737 | 38.3% | 71.4% | 59.9% |
P | 20.9% | 30.8% | 19.6% | 28.7% | 1 | ||
PA | 61.9% | 78.9% | 89.9% | 95.3% | OA =82.2% | ||
PE | 51.8% | 69.5% | 87.4% | 93.5% | MICE = 76% | ||
PB | BG | LT | GV | BV | P | UA | UE |
BG | 0.0364 | 0.0106 | 0.0008 | 0 | 4.8% | 76.2% | 74.5% |
LT | 0.0106 | 0.3131 | 0.0106 | 0 | 33.4% | 93.7% | 90.6% |
GV | 0.0207 | 0.0026 | 0.1373 | 0.0026 | 16.3% | 84.1% | 81.4% |
BV | 0 | 0 | 0 | 0.4547 | 45.5% | 100% | 100% |
P | 6.8% | 32.6% | 14.9% | 45.7% | 1 | ||
PA | 53.7% | 96% | 92.4% | 99.4% | OA = 94.1% | ||
PE | 50.4% | 94% | 91% | 99% | MICE = 91.1% | ||
PB3 | BG | LT | GV | BV | P | UA | UE |
BG | 0.0076 | 0.0024 | 0.0002 | 0 | 1% | 74.6% | 73.8% |
LT | 0.0152 | 0.2206 | 0.0038 | 0 | 24% | 92.1% | 89.8% |
GV | 0 | 0 | 0.6955 | 0.0112 | 70.7% | 98.4% | 94.7% |
BV | 0.0069 | 0.0007 | 0.0007 | 0.0352 | 4.3% | 81% | 80% |
P | 3% | 22.4% | 70% | 4.6% | 1 | ||
PA | 25.7% | 98.6% | 99.3% | 75.8% | OA = 95.9% | ||
PE | 23.4% | 98.2% | 97.8% | 74.6% | MICE = 91% |
RH | MC | UV | BWD | P | UA | UE |
---|---|---|---|---|---|---|
MC | 0.3198 | 0.1032 | 0.0052 | 42.8% | 74.7% | 58.7% |
UV | 0.0567 | 0.3008 | 0.0044 | 36.2% | 83.1% | 71.2% |
BWD | 0.0101 | 0.0101 | 0.1897 | 21% | 90.4% | 88% |
P | 38.7% | 41.4% | 19.9% | 1 | ||
PA | 82.7% | 72.6% | 95.2% | OA = 81% | ||
PE | 71.8% | 53.3% | 94% | MICE = 70.3% | ||
MH | MC | UV | BWD | P | UA | UE |
MC | 0.463 | 0.0361 | 0 | 49.9% | 92.8% | 85.4% |
UV | 0.0428 | 0.3083 | 0.0043 | 35.5% | 86.7% | 79.6% |
BWD | 0 | 0.0053 | 0.1402 | 14.5% | 96.4% | 95.8% |
P | 50.6% | 35% | 14.5% | 1 | ||
PA | 91.5% | 88.2% | 97% | OA = 91.2% | ||
PE | 82.9% | 81.8% | 96.5% | MICE = 85.3% | ||
PH | MC | UV | BWD | P | UA | UE |
MC | 0.4951 | 0.0462 | 0.0066 | 54.8% | 90.4% | 80.1% |
UV | 0.0202 | 0.2496 | 0.0101 | 28.0% | 89.2% | 84.4% |
BWD | 0 | 0.0083 | 0.1639 | 17.2% | 95.2% | 94.1% |
P | 51.5% | 30.4% | 18.1% | 1 | ||
PA | 96.1% | 82.1% | 90.7% | OA = 90.9% | ||
PE | 91.9% | 74.2% | 88.7% | MICE = 85% | ||
PH2 | MC | UV | BWD | P | UA | UE |
MC | 0.3865 | 0.1104 | 0.0123 | 50.9% | 75.9% | 57.3% |
UV | 0.0438 | 0.2096 | 0.0063 | 26.0% | 80.7% | 71.1% |
BWD | 0.0056 | 0.0139 | 0.2116 | 23.1% | 91.6% | 89% |
P | 43.6% | 33.4% | 23% | 1 | ||
PA | 88.7% | 62.8% | 92% | OA = 80.8% | ||
PE | 79.9% | 44.1% | 89.5% | MICE = 70.2% |
PWA Burn | Volz Harvest | |
---|---|---|
Mean | 0.878 | 0.777 |
Variance | 0.00647 | 0.00739 |
Observations | 4 | 4 |
Pooled Variance | 0.00694 | |
Hypothesized Mean Difference | 0 | |
df | 6 | |
t-stat | 1.737 | |
P(T ≤ t) two-tail | 0.132 | |
t-critical two-tail | 2.447 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miller, Z.; Hupy, J.; Hubbard, S.; Shao, G. Precise Quantification of Land Cover before and after Planned Disturbance Events with UAS-Derived Imagery. Drones 2022, 6, 52. https://doi.org/10.3390/drones6020052
Miller Z, Hupy J, Hubbard S, Shao G. Precise Quantification of Land Cover before and after Planned Disturbance Events with UAS-Derived Imagery. Drones. 2022; 6(2):52. https://doi.org/10.3390/drones6020052
Chicago/Turabian StyleMiller, Zachary, Joseph Hupy, Sarah Hubbard, and Guofan Shao. 2022. "Precise Quantification of Land Cover before and after Planned Disturbance Events with UAS-Derived Imagery" Drones 6, no. 2: 52. https://doi.org/10.3390/drones6020052
APA StyleMiller, Z., Hupy, J., Hubbard, S., & Shao, G. (2022). Precise Quantification of Land Cover before and after Planned Disturbance Events with UAS-Derived Imagery. Drones, 6(2), 52. https://doi.org/10.3390/drones6020052