Biplane Trajectory Tracking Using Hybrid Controller Based on Backstepping and Integral Terminal Sliding Mode Control
Abstract
:1. Introduction
2. Mathematical Model of Biplane Quadrotor
3. Hybrid Controller Design
3.1. Quadrotor Mode
- For the BSC-based control, controller 1 (Position controller) and controller 2 (Attitude controller) blocks are both backstepping controllers.
- For ITSMC based control, controller 1 and controller 2 are both replaced by ITSMCs.
- For the Hybrid controller, controller 1 is replaced by an ITSMC and controller 2 is replaced by a BSC.
- In hybrid control, controller 1 can be replaced by the BSC and controller 2 can be replaced by the ITSMC, but in this simulation study, we consider only the above case for the hybrid controller. More details are in the Results and Discussions section.
3.1.1. ITSMC Design
3.1.2. BSC Design
3.2. Transition Mode
3.3. Flight Mode
4. Results and Discussions
5. Conclusions
- In the x-axis trajectory tracking, just after transition mode at s, the hybrid controller takes less time and generates lesser error than the BSC. At s, the biplane quadrotor commanded to suddenly change velocity from 20 m/s to 10 m/s results in superior performance in the hybrid controller than the ITSMC and BSC.
- At s, the ITSMC takes longer to track in the y-axis trajectory, and the BSC generates the most significant error among these controllers. However, the hybrid controller can track within a 15 m error in the desired trajectory and takes 17 s.
- The hybrid controller effectively manages altitude tracking of the biplane quadrotor. At s, when commanded to hover after take off at 5 m/s velocity, the performance of the ITSMC is sluggish, taking more than 3 s to hold the altitude. In comparison, the hybrid controller is faster than the ITSMC, and BSC and takes only 2 s to track the altitude. When a sudden mass change happens at s, the hybrid controller generates 2 m error and takes only 3 s to track the altitude again, while the BSC generates a significant error, and ITSMC takes more time.
- In attitude tracking, the response of ITSMC is slower than BSC and hybrid controllers.
- The performance of these controllers is also evaluated in the scenarios when a sudden mass change happens. Again, the hybrid controller’s performance is far superior to the other two controllers as the BSC generates 20 cm steady-state error while the ITSMC has a slow response.
- Although the change in the parameters is not accurately measured analytically, for instance, using an adaptive backstepping controller, the robustness of the proposed control methods adopted is still proven numerically through simulations, as shown in Figure 13.
- The BSC and ITSMC controllers track the desired trajectory, but a hybrid controller is an obvious choice when we require faster and more precise control.
6. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suzuki, S.; Zhijia, R.; Horita, Y.; Nonami, K.; Kimura, G.; Bando, T.; Hirabayashi, D.; Furuya, M.; Yasuda, K. Attitude control of quad rotors QTW-UAV with tilt wing mechanism. J. Syst. Des. Dyn. 2010, 4, 416–428. [Google Scholar] [CrossRef] [Green Version]
- Stone, R.H.; Anderson, P.; Hutchison, C.; Tsai, A.; Gibbens, P.; Wong, K.C. Flight Testing of the T-Wing Tail-Sitter Unmanned Air Vehicle. J. Aircr. 2008, 45, 673–685. [Google Scholar] [CrossRef]
- Ko, A.; Ohanian, O.; Gelhausen, P. Ducted Fan UAV Modeling and Simulation in Preliminary Design. In Proceedings of the AIAA Modeling and Simulation Technologies Conference and Exhibit, Hilton Head, SC, USA, 20–23 August 2007. [Google Scholar] [CrossRef] [Green Version]
- Swarnkar, S.; Parwana, H.; Kothari, M.; Abhishek, A. Biplane-quadrotor tail-sitter uav: Flight dynamics and control. J. Guid. Control Dyn. 2018, 41, 1049–1067. [Google Scholar] [CrossRef]
- Hrishikeshavan, V.; Bogdanowicz, C.; Chopra, I. Design, Performance and Testing of a Quad Rotor Biplane Micro Air Vehicle for Multi Role Missions. Int. J. Micro Air Veh. 2014, 6, 155–173. [Google Scholar] [CrossRef] [Green Version]
- Ryseck, P.; Yeo, D.W.; Hrishikeshavan, V.; Chopra, I. Expanding the Mission Capabilities of a Quadrotor Biplane Tail-sitter with Morphing Winglets. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020. [Google Scholar] [CrossRef]
- Reddinger, J.P.F.; McIntosh, K.; Zhao, D.; Mishra, S. Modeling and Trajectory Control of a Transitioning Quadrotor Biplane Tailsitter. In Proceedings of the Vertical Flight Society 75th Annual Forum, Philadelphia, PA, USA, 13–16 May 2019. [Google Scholar]
- Yeo, D.; Hrishikeshavan, V.; Chopra, I. Gust Detection and Mitigation on a Quad Rotor Biplane. In Proceedings of the AIAA Atmospheric Flight Mechanics Conference, San Diego, CA, USA, 4–8 January 2016. [Google Scholar] [CrossRef]
- Raj, N.; Simha, A.; Kothari, M.; Abhishek; Banavar, R.N. Iterative Learning based feedforward control for Transition of a Biplane-Quadrotor Tailsitter UAS. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 321–327. [Google Scholar] [CrossRef]
- Phillips, B.; Hrishikeshavan, V.; Rand, O.; Chopra, I. Design and Development of a Scaled Quadrotor Biplane with Variable Pitch Proprotors for Rapid Payload Delivery. In Proceedings of the American Helicopter Society 72nd Annual Forum, West Palm Beach, FL, USA, 16–19 May 2016. [Google Scholar]
- Sandiwan, A.P.; Cahyadi, A.; Herdjunanto, S. Robust proportional-derivative control on SO(3) with disturbance compensation for quadrotor UAV. Int. J. Control Autom. Syst. 2017, 15, 2329–2342. [Google Scholar] [CrossRef]
- Bouabdallah, S.; Noth, A.; Siegwart, R. PID vs. LQ control techniques applied to an indoor micro quadrotor. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), Sendai, Japan, 28 September–2 October 2004; Volume 3, pp. 2451–2456. [Google Scholar] [CrossRef] [Green Version]
- Zhong, J.; Song, B.; Li, Y.; Xuan, J. L1 Adaptive Control of a Dual-Rotor Tail-Sitter Unmanned Aerial Vehicle with Input Constraints During Hover Flight. IEEE Access 2019, 7, 51312–51328. [Google Scholar] [CrossRef]
- Liu, H.; Peng, F.; Lewis, F.L.; Wan, Y. Robust Tracking Control for Tail-Sitters in Flight Mode Transitions. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 2023–2035. [Google Scholar] [CrossRef]
- Zhang, S.; Fei, Q.; Liang, J.; Geng, Q. Modeling and control for longitudinal attitude of a twin-rotor tail-sitter unmanned aerial vehicle. In Proceedings of the 13th IEEE International Conference on Control Automation (ICCA), Ohrid, North Macedonia, 3–6 July 2017; pp. 816–821. [Google Scholar] [CrossRef]
- Xi, L.; Zhu, Q.; Zhang, D. Sliding mode control design based on fuzzy reaching law for yaw angle of a Tail-sitter UAV. In Proceedings of the 2016 22nd International Conference on Automation and Computing (ICAC), Colchester, UK, 7–8 September 2016; pp. 238–243. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, H.H. Tracking a Moving Target by a Fixed-wing UAV Based on Sliding Mode Control. In Proceedings of the AIAA Guidance, Navigation, and Control (GNC) Conference, Boston, MA, USA, 19–22 August 2013. [Google Scholar] [CrossRef]
- Gambhire, S.J.; Kishore, D.R.; Londhe, P.S.; Pawar, S.N. Review of sliding mode based control techniques for control system applications. Int. J. Dyn. Control 2020, 9, 363–378. [Google Scholar] [CrossRef]
- Dalwadi, N.; Deb, D.; Kothari, M.; Ozana, S. Disturbance Observer-Based Backstepping Control of Tail-Sitter UAVs. Actuators 2021, 10, 119. [Google Scholar] [CrossRef]
- Lyu, X.; Zhou, J.; Gu, H.; Li, Z.; Shen, S.; Zhang, F. Disturbance Observer Based Hovering Control of Quadrotor Tail-Sitter VTOL UAVs Using H∞ Synthesis. IEEE Robot. Autom. Lett. 2018, 3, 2910–2917. [Google Scholar] [CrossRef]
- Abdul Salam, A.; Ibraheem, I. Nonlinear PID controller design for a 6-DOF UAV quadrotor system. Eng. Sci. Technol. Int. J. 2019, 22, 1087–1097. [Google Scholar] [CrossRef]
- Moreno-Valenzuela, J.; Pérez-Alcocer, R.; Guerrero-Medina, M.; Dzul, A. Nonlinear PID-Type Controller for Quadrotor Trajectory Tracking. IEEE/ASME Trans. Mechatron. 2018, 23, 2436–2447. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, Z.; Xi, L. Adaptive dual fuzzy PID control method for longitudinal attitude control of tail-sitter UAV. In Proceedings of the 2016 22nd International Conference on Automation and Computing (ICAC), Colchester, UK, 7–8 September 2016; pp. 378–382. [Google Scholar] [CrossRef]
- Jung, Y.; Shim, D.H. Development and Application of Controller for Transition Flight of Tail-Sitter UAV. J. Intell. Robot. Syst. 2011, 65, 137–152. [Google Scholar] [CrossRef]
- Demirhan, M.; Premachandra, C. Development of an Automated Camera-Based Drone Landing System. IEEE Access 2020, 8, 202111–202121. [Google Scholar] [CrossRef]
- Shehzad, M.F.; Bilal, A.; Ahmad, H. Position & Attitude Control of an Aerial Robot (Quadrotor) with Intelligent PID and State feedback LQR Controller: A Comparative Approach. In Proceedings of the 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 8–12 January 2019; pp. 340–346. [Google Scholar] [CrossRef]
- Khodja, M.A.; Tadjine, M.; Boucherit, M.S.; Benzaoui, M. Tuning PID attitude stabilization of a quadrotor using particle swarm optimization (experimental). Int. J. Simul. Multidiscip. Des. Optim. 2017, 8, A8. [Google Scholar] [CrossRef] [Green Version]
- Selamat, N.A.; Daud, F.S.; Jaafar, H.I.; Shamsudin, N.H. Comparison of LQR and PID controller tuning using PSO for Coupled Tank System. In Proceedings of the 2015 IEEE 11th International Colloquium on Signal Processing Its Applications (CSPA), Kuala Lumpur, Malaysia, 6–8 March 2015; pp. 46–51. [Google Scholar] [CrossRef]
- Khatoon, S.; Nasiruddin, I.; Shahid, M. Design and Simulation of a Hybrid PD-ANFIS Controller for Attitude Tracking Control of a Quadrotor UAV. Arab. J. Sci. Eng. 2017, 42, 5211–5229. [Google Scholar] [CrossRef]
- Raza, S.A.; Etele, J.; Fusina, G. Hybrid Controller for Improved Position Control of Quadrotors in Urban Wind Conditions. J. Aircr. 2018, 55, 1014–1023. [Google Scholar] [CrossRef]
- Dalwadi, N.; Deb, D.; Muyeen, S.M. Adaptive backstepping controller design of quadrotor biplane for payload delivery. IET Intell. Transp. Syst. 2022. [Google Scholar] [CrossRef]
- Morshed, M.J.; Fekih, A. Design of a chattering-free integral terminal sliding mode approach for DFIG-based wind energy systems. Optim. Control Appl. Methods 2020, 41, 1718–1734. [Google Scholar] [CrossRef]
- Su, Y.; Zheng, C. A new nonsingular integral terminal sliding mode control for robot manipulators. Int. J. Syst. Sci. 2020, 51, 1418–1428. [Google Scholar] [CrossRef]
- Ullah, S.; Khan, Q.; Mehmood, A.; Kirmani, S.A.M.; Mechali, O. Neuro-adaptive fast integral terminal sliding mode control design with variable gain robust exact differentiator for under-actuated quadcopter UAV. ISA Trans. 2021, 120, 293–304. [Google Scholar] [CrossRef]
- Labbadi, M.; Cherkaoui, M. Robust Integral Terminal Sliding Mode Control for Quadrotor UAV with External Disturbances. Int. J. Aerosp. Eng. 2019, 2019, 2016416. [Google Scholar] [CrossRef]
- Labbadi, M.; Cherkaoui, M. Adaptive Fractional-Order Nonsingular Fast Terminal Sliding Mode Based Robust Tracking Control of Quadrotor UAV With Gaussian Random Disturbances and Uncertainties. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 2265–2277. [Google Scholar] [CrossRef]
- Mofid, O.; Mobayen, S.; Wong, W.K. Adaptive Terminal Sliding Mode Control for Attitude and Position Tracking Control of Quadrotor UAVs in the Existence of External Disturbance. IEEE Access 2021, 9, 3428–3440. [Google Scholar] [CrossRef]
- Modirrousta, A.; Khodabandeh, M. A novel nonlinear hybrid controller design for an uncertain quadrotor with disturbances. Aerosp. Sci. Technol. 2015, 45, 294–308. [Google Scholar] [CrossRef]
- Huang, S.; Huang, J.; Cai, Z.; Cui, H. Adaptive Backstepping Sliding Mode Control for Quadrotor UAV. Sci. Program. 2021, 2021, 3997648. [Google Scholar] [CrossRef]
- Ambati, P.R.; Padhi, R. A Neuro-Adaptive Augmented Dynamic Inversion Design for Robust Auto-Landing. IFAC Proc. Vol. 2014, 47, 12202–12207. [Google Scholar] [CrossRef] [Green Version]
Parameters | Value | Parameters | Value |
---|---|---|---|
g | 9.8 m s | Wing area (single) | 0.754 m |
Mass (m) | 12 kg | Aspect ratio | 6.9 |
kgm | Wing Span | 2.29 m | |
kgm | Gap-to-chord ratio | 2.56 | |
kgm | Slung load mass () | 2 kg |
Quadrotor, Transition Mode | Fixed Wing Mode | ||||||
---|---|---|---|---|---|---|---|
Parameter | Values | Parameter | Values | Parameter | Values | Parameter | Values |
1.5 | 2.8 | 15 | 5 | ||||
1.5 | 2.8 | 113 | 13 | ||||
3 | 5 | 113 | 13 | ||||
15 | 18 | 113 | 13 | ||||
15 | 18 | ||||||
15 | 18 |
Quadrotor, Transition Mode | Fixed Wing Mode | ||||||
---|---|---|---|---|---|---|---|
Parameter | Values | Parameter | Values | Parameter | Values | Parameter | Values |
2.70 | 0.317 | 1.27 | 3.57 | ||||
2.70 | 0.317 | 2.78 | 2.57 | ||||
2.70 | 1.57 | 2.78 | 2.75 | ||||
1.78 | 1.57 | 2.78 | 2.57 | ||||
1.78 | 1.57 | 2.3 | 1.66 | ||||
1.78 | 1.27 | 2 | 2.66 | ||||
3.3 | 2.66 | 2 | 2.66 | ||||
3.3 | 2.66 | 2 | 2.66 | ||||
3.3 | 1.66 | 7 | 5 | ||||
3.3 | 5.66 | 7 | 5 | ||||
3.3 | 8.66 | 7 | 5 | ||||
3.3 | 5.66 | ||||||
9 | 5 | ||||||
9 | 5 | ||||||
9 | 7 | ||||||
7 | 5 | ||||||
7 | 5 | ||||||
7 | 5 |
Quadrotor, Transition Mode | Fixed Wing Mode | ||||||
---|---|---|---|---|---|---|---|
Parameter | Values | Parameter | Values | Parameter | Values | Parameter | Values |
5.70 | 2.317 | 1.27 | 3.57 | ||||
5.70 | 2.317 | 2.3 | 1.66 | ||||
8.70 | 3.57 | 9 | 7 | ||||
5.3 | 3.66 | 113 | 13 | ||||
5.3 | 3.66 | 113 | 13 | ||||
5.3 | 2.66 | 113 | 13 | ||||
9 | 5 | ||||||
9 | 5 | ||||||
9 | 7 |
Sr.No | Time (s) | BSC | ITSMC | ITSMC + BSC |
---|---|---|---|---|
0–50 | 390 | 395 | 382 | |
(i) | 50–950 | |||
950–1000 | 132 | 128 | 122 | |
(ii) | 0–100 | 1305 | 230 | 133 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dalwadi, N.; Deb, D.; Rath, J.J. Biplane Trajectory Tracking Using Hybrid Controller Based on Backstepping and Integral Terminal Sliding Mode Control. Drones 2022, 6, 58. https://doi.org/10.3390/drones6030058
Dalwadi N, Deb D, Rath JJ. Biplane Trajectory Tracking Using Hybrid Controller Based on Backstepping and Integral Terminal Sliding Mode Control. Drones. 2022; 6(3):58. https://doi.org/10.3390/drones6030058
Chicago/Turabian StyleDalwadi, Nihal, Dipankar Deb, and Jagat Jyoti Rath. 2022. "Biplane Trajectory Tracking Using Hybrid Controller Based on Backstepping and Integral Terminal Sliding Mode Control" Drones 6, no. 3: 58. https://doi.org/10.3390/drones6030058
APA StyleDalwadi, N., Deb, D., & Rath, J. J. (2022). Biplane Trajectory Tracking Using Hybrid Controller Based on Backstepping and Integral Terminal Sliding Mode Control. Drones, 6(3), 58. https://doi.org/10.3390/drones6030058