Entropy-Based Distributed Behavior Modeling for Multi-Agent UAVs
Abstract
:1. Introduction
2. Dynamic Model of UAVs
3. Distributed Behavior Model
Algorithm 1: Pseudocode Representation of Algorithm 1 |
Algorithm 2: Pseudocode Representation of Algorithm 2 |
4. Parameter Analysis
5. Multiple Waypoint Simulation Results and Discussion
5.1. Multiple Waypoint Navigation with Three UAVs
5.2. Multiple Waypoint Navigation with Six UAVs
5.3. Scalability and Stability Discussions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mukhamediev, R.I.; Symagulov, A.; Kuchin, Y.; Zaitseva, E.; Bekbotayeva, A.; Yakunin, K.; Assanov, I.; Levashenko, V.; Popova, Y.; Akzhalova, A.; et al. Review of Some Applications of Unmanned Aerial Vehicles Technology in the Resource-Rich Country. Appl. Sci. 2021, 11, 10171. [Google Scholar] [CrossRef]
- Noor, N.M.; Abdullah, A.; Hashim, M. Remote sensing UAV/drones and its applications for urban areas: A review. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018; Volume 169, p. 012003. [Google Scholar]
- Shakhatreh, H.; Sawalmeh, A.H.; Al-Fuqaha, A.; Dou, Z.; Almaita, E.; Khalil, I.; Othman, N.S.; Khreishah, A.; Guizani, M. Unmanned aerial vehicles (UAVs): A survey on civil applications and key research challenges. IEEE Access 2019, 7, 48572–48634. [Google Scholar] [CrossRef]
- Barnes, L.; Fields, M.; Valavanis, K. Unmanned ground vehicle swarm formation control using potential fields. In Proceedings of the 2007 Mediterranean Conference on Control & Automation, Athens, Greece, 27–29 June 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 1–8. [Google Scholar]
- Deng, Q.; Yu, J.; Wang, N. Cooperative task assignment of multiple heterogeneous unmanned aerial vehicles using a modified genetic algorithm with multi-type genes. Chin. J. Aeronaut. 2013, 26, 1238–1250. [Google Scholar] [CrossRef] [Green Version]
- Das, A.; Kol, P.; Lundberg, C.; Doelling, K.; Sevil, H.E.; Lewis, F. A Rapid Situational Awareness Development Framework for Heterogeneous Manned-Unmanned Teams. In Proceedings of the NAECON 2018-IEEE National Aerospace and Electronics Conference, Dayton, OH, USA, 23–26 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 417–424. [Google Scholar]
- Das, A.N.; Doelling, K.; Lundberg, C.; Sevil, H.E.; Lewis, F. A Mixed Reality Based Hybrid Swarm Control Architecture for Manned-Unmanned Teaming (MUM-T). In Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition (IMECE2017), Tampa, FL, USA, 3–9 November 2017. IMECE2017-72076. [Google Scholar]
- Madey, G.R.; Blake, M.B.; Poellabauer, C.; Lu, H.; McCune, R.R.; Wei, Y. Applying DDDAS principles to command, control and mission planning for UAV swarms. Procedia Comput. Sci. 2012, 9, 1177–1186. [Google Scholar] [CrossRef] [Green Version]
- MacKenzie, D.C. Collaborative tasking of tightly constrained multi-robot missions. In Proceedings of the Multi-Robot Systems: From Swarms to Intelligent Automata: 2003 International Workshop on Multi-Robot Systems, Washington, DC, USA, 17–19 March 2003; Naval Research Laboratory: Washington, DC, USA, 2003; Volume 2, pp. 39–50. [Google Scholar]
- Lundberg, C.L.; Sevil, H.E.; Das, A. A VisualSfM based Rapid 3-D Modeling Framework using Swarm of UAVs. In Proceedings of the 2018 International Conference on Unmanned Aircraft Systems (ICUAS), Dallas, TX, USA, 12–15 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 22–29. [Google Scholar]
- Sauter, J.; Matthews, R.; Robinson, J.; Moody, J.; Riddle, S. Swarming unmanned air and ground systems for surveillance and base protection. In Proceedings of the AIAA Infotech@ Aerospace Conference and AIAA Unmanned… Unlimited Conference, Seattle, WA, USA, 6–9 April 2009; p. 1850. [Google Scholar]
- Dasgupta, P. A multiagent swarming system for distributed automatic target recognition using unmanned aerial vehicles. IEEE Trans. Syst. Man Cybern. Part A Syst. Humans 2008, 38, 549–563. [Google Scholar] [CrossRef]
- Frew, E.; Xiao, X.; Spry, S.; McGee, T.; Kim, Z.; Tisdale, J.; Sengupta, R.; Hedrick, J.K. Flight demonstrations of self-directed collaborative navigation of small unmanned aircraft. In Proceedings of the AIAA 3rd “Unmanned Unlimited" Technical Conference, Workshop and Exhibit, Chicago, IL, USA, 20–23 September 2004; p. 6608. [Google Scholar]
- Hinchey, M.G.; Sterritt, R.; Rouff, C. Swarms and swarm intelligence. Computer 2007, 40, 111–113. [Google Scholar] [CrossRef]
- Kolling, A.; Walker, P.; Chakraborty, N.; Sycara, K.; Lewis, M. Human interaction with robot swarms: A survey. IEEE Trans. Hum. Mach. Syst. 2015, 46, 9–26. [Google Scholar] [CrossRef] [Green Version]
- Rizk, Y.; Awad, M.; Tunstel, E.W. Cooperative heterogeneous multi-robot systems: A survey. ACM Comput. Surv. (CSUR) 2019, 52, 1–31. [Google Scholar] [CrossRef]
- Balch, T.; Arkin, R.C. Behavior-based formation control for multirobot teams. IEEE Trans. Robot. Autom. 1998, 14, 926–939. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, S.; Bicho, E. A dynamical systems approach to behavior-based formation control. In Proceedings of the 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292), Washington, DC, USA, 11–15 May 2002; IEEE: Piscataway, NJ, USA, 2002; Volume 3, pp. 2606–2611. [Google Scholar]
- Lawton, J.R.; Beard, R.W.; Young, B.J. A decentralized approach to formation maneuvers. IEEE Trans. Robot. Autom. 2003, 19, 933–941. [Google Scholar] [CrossRef] [Green Version]
- Fredslund, J.; Mataric, M.J. A general algorithm for robot formations using local sensing and minimal communication. IEEE Trans. Robot. Autom. 2002, 18, 837–846. [Google Scholar] [CrossRef] [Green Version]
- Caglioti, V.; Citterio, A.; Fossati, A. Cooperative, distributed localization in multi-robot systems: A minimum-entropy approach. In Proceedings of the IEEE Workshop on Distributed Intelligent Systems: Collective Intelligence and Its Applications (DIS’06), Prague, Czech Republic, 15–16 June 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 25–30. [Google Scholar]
- Monteiro, S.; Bicho, E. Attractor dynamics approach to formation control: Theory and application. Auton. Robot. 2010, 29, 331–355. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Zhang, X.; Zhu, Z.; Chen, C.; Yang, P. Behavior-based formation control of swarm robots. Math. Probl. Eng. 2014, 2014, 205759. [Google Scholar] [CrossRef]
- Olfati-Saber, R. Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Trans. Autom. Control 2006, 51, 401–420. [Google Scholar] [CrossRef] [Green Version]
- Vásárhelyi, G.; Virágh, C.; Somorjai, G.; Nepusz, T.; Eiben, A.E.; Vicsek, T. Optimized flocking of autonomous drones in confined environments. Sci. Robot. 2018, 3. [Google Scholar] [CrossRef] [Green Version]
- Mirjalili, S. Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 2016, 27, 1053–1073. [Google Scholar] [CrossRef]
- Arafat, M.Y.; Moh, S. Localization and clustering based on swarm intelligence in UAV networks for emergency communications. IEEE Internet Things J. 2019, 6, 8958–8976. [Google Scholar] [CrossRef]
- Kamel, M.A.; Yu, X.; Zhang, Y. Real-Time Fault-Tolerant Formation Control of Multiple WMRs Based on Hybrid GA-PSO Algorithm. In IEEE Transactions on Automation Science and Engineering; IEEE: Piscataway, NJ, USA, 2020. [Google Scholar]
- Zhang, J.; Yan, J.; Zhang, P. Multi-UAV Formation Control Based on a Novel Back-Stepping Approach. IEEE Trans. Veh. Technol. 2020, 69, 2437–2448. [Google Scholar] [CrossRef]
- Liu, W.; Gao, Z. A distributed flocking control strategy for UAV groups. Comput. Commun. 2020, 153, 95–101. [Google Scholar] [CrossRef]
- Neto, V.E.; Sarcinelli-Filho, M.; Brandão, A.S. Trajectory-tracking of a Heterogeneous Formation Using Null Space-Based Control. In Proceedings of the 2019 International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, 11–14 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 187–195. [Google Scholar]
- Lee, G.; Chwa, D. Decentralized behavior-based formation control of multiple robots considering obstacle avoidance. Intell. Serv. Robot. 2018, 11, 127–138. [Google Scholar] [CrossRef]
- Qu, X.; Wan, Y.; Zhou, P.; Li, L. Consensus-Based Formation of Second-Order Multi-Agent Systems via Linear-Transformation-Based Partial Stability Approach. IEEE Access 2019, 7, 165420–165427. [Google Scholar] [CrossRef]
- Fu, X.; Pan, J.; Wang, H.; Gao, X. A Formation Maintenance and Reconstruction Method of UAV Swarm based on Distributed Control. Aerospace Sci. Technol. 2020, 104, 105981. [Google Scholar] [CrossRef]
- Alonso-Mora, J.; Montijano, E.; Nägeli, T.; Hilliges, O.; Schwager, M.; Rus, D. Distributed multi-robot formation control in dynamic environments. Auton. Robot. 2019, 43, 1079–1100. [Google Scholar] [CrossRef] [Green Version]
- Fathian, K.; Safaoui, S.; Summers, T.H.; Gans, N.R. Robust 3D distributed formation control with collision avoidance and application to multirotor aerial vehicles. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 9209–9215. [Google Scholar]
- Speck, C.; Bucci, D.J. Distributed UAV swarm formation control via object-focused, multi-objective SARSA. In Proceedings of the 2018 Annual American Control Conference (ACC), Milwaukee, WI, USA, 27–29 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 6596–6601. [Google Scholar]
- Du, H.; Zhu, W.; Wen, G.; Duan, Z.; Lü, J. Distributed formation control of multiple quadrotor aircraft based on nonsmooth consensus algorithms. IEEE Trans. Cybern. 2017, 49, 342–353. [Google Scholar] [CrossRef]
- Yang, X.; Fan, X. A distributed formation control scheme with obstacle avoidance for multiagent systems. Math. Probl. Eng. 2019, 2019, 3252303. [Google Scholar] [CrossRef]
- Pickem, D.; Glotfelter, P.; Wang, L.; Mote, M.; Ames, A.; Feron, E.; Egerstedt, M. The robotarium: A remotely accessible swarm robotics research testbed. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1699–1706. [Google Scholar]
- Cofta, P.; Ledziński, D.; Śmigiel, S.; Gackowska, M. Cross-Entropy as a Metric for the Robustness of Drone Swarms. Entropy 2020, 22, 597. [Google Scholar] [CrossRef]
- Albani, D.; Manoni, T.; Arik, A.; Nardi, D.; Trianni, V. Field coverage for weed mapping: Toward experiments with a UAV swarm. In Proceedings of the International Conference on Bio-inspired Information and Communication, Pittsburgh, PA, USA, 13–14 March 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 132–146. [Google Scholar]
- Schranz, M.; Umlauft, M.; Sende, M.; Elmenreich, W. Swarm Robotic Behaviors and Current Applications. Front. Robot. AI 2020, 7, 36. [Google Scholar] [CrossRef] [Green Version]
- Arnold, R.D.; Yamaguchi, H.; Tanaka, T. Search and rescue with autonomous flying robots through behavior-based cooperative intelligence. J. Int. Humanit. Action 2018, 3, 18. [Google Scholar] [CrossRef] [Green Version]
- Kamel, M.A.; Yu, X.; Zhang, Y. Formation control and coordination of multiple unmanned ground vehicles in normal and faulty situations: A review. Annu. Rev. Control. 2020, 49, 128–144. [Google Scholar] [CrossRef]
- Shah, S.; Dey, D.; Lovett, C.; Kapoor, A. Airsim: High-fidelity visual and physical simulation for autonomous vehicles. In Field and Service Robotics; Springer: Berlin/Heidelberg, Germany, 2018; pp. 621–635. [Google Scholar]
- Furrer, F.; Burri, M.; Achtelik, M.; Siegwart, R. Rotors—A modular gazebo mav simulator framework. In Robot Operating System (ROS); Springer: Berlin/Heidelberg, Germany, 2016; pp. 595–625. [Google Scholar]
- Microsoft. Airsim/Simpleflight. Available online: https://microsoft.github.io/AirSim/simple_flight/ (accessed on 27 June 2022).
- Silano, G.; Oppido, P.; Iannelli, L. Software-in-the-loop simulation for improving flight control system design: A quadrotor case study. In Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 466–471. [Google Scholar]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Can, F.C.; Bayram, Ç.; Toksoy, A.K.; Avşar, H.; Özdemir, S. Characterization of swarm behavior through pair-wise interactions by Tsallis entropy. In Proceedings of the 2nd Indian International Conference on Artificial Intelligence, Pune, India, 20–22 December 2005. [Google Scholar]
UAV1 | UAV2 | UAV3 | UAV1 | UAV2 | UAV3 | |
---|---|---|---|---|---|---|
Trial 1 | 1706 | 1706 | 1706 | 177 | 174 | 177 |
Trial 2 | 1632 | 1632 | 1632 | 168 | 166 | 170 |
Trial 3 | 1387 | 1387 | 1387 | 145 | 144 | 140 |
Trial 4 | 1747 | 1748 | 1748 | 180 | 176 | 181 |
Trial 5 | 1755 | 1755 | 1755 | 179 | 175 | 181 |
Trial 6 | 3105 | 3105 | 3105 | 237 | 219 | 249 |
Trial 7 | 1672 | 1672 | 1672 | 172 | 169 | 174 |
Trial 8 | 1778 | 1778 | 1778 | 180 | 168 | 181 |
Trial 9 | 1593 | 1593 | 1593 | 161 | 151 | 165 |
Trial 10 | 1730 | 1730 | 1730 | 178 | 175 | 180 |
Trial 11 | 2244 | 2179 | 2244 | 199 | 206 | 195 |
Trial 12 | 2856 | 2560 | 2865 | 248 | 188 | 245 |
Threshold | q | ||||
---|---|---|---|---|---|
Trial 1 | 0.5 | 0.5 | 100 | 0.5 | 12 |
Trial 2 | 1.5 | 0.5 | 100 | 0.5 | 12 |
Trial 3 | 3 | 0.5 | 100 | 0.5 | 12 |
Trial 4 | 0.5 | 0.75 | 100 | 0.5 | 12 |
Trial 5 | 0.5 | 1 | 100 | 0.5 | 12 |
Trial 6 | 0.5 | 5 | 100 | 0.5 | 12 |
Trial 7 | 0.5 | 0.5 | 150 | 0.5 | 17 |
Trial 8 | 0.5 | 0.5 | 200 | 0.5 | 25 |
Trial 9 | 0.5 | 0.5 | 250 | 0.5 | 30 |
Trial 10 | 0.5 | 0.5 | 100 | 0.6 | 12 |
Trial 11 | 0.5 | 0.5 | 100 | 0.75 | 24 |
Trial 12 | 0.5 | 0.5 | 100 | 0.9 | 30 |
Number of UAVs | Entropy Threshold Value |
---|---|
3 | 1 |
6 | 3.9 |
9 | 7.3 |
12 | 10.6 |
15 | 14.3 |
18 | 18 |
20 | 19.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fina, L.; Smith, D.S., Jr.; Carnahan, J.; Sevil, H.E. Entropy-Based Distributed Behavior Modeling for Multi-Agent UAVs. Drones 2022, 6, 164. https://doi.org/10.3390/drones6070164
Fina L, Smith DS Jr., Carnahan J, Sevil HE. Entropy-Based Distributed Behavior Modeling for Multi-Agent UAVs. Drones. 2022; 6(7):164. https://doi.org/10.3390/drones6070164
Chicago/Turabian StyleFina, Luke, Douglas Shane Smith, Jr., Jason Carnahan, and Hakki Erhan Sevil. 2022. "Entropy-Based Distributed Behavior Modeling for Multi-Agent UAVs" Drones 6, no. 7: 164. https://doi.org/10.3390/drones6070164
APA StyleFina, L., Smith, D. S., Jr., Carnahan, J., & Sevil, H. E. (2022). Entropy-Based Distributed Behavior Modeling for Multi-Agent UAVs. Drones, 6(7), 164. https://doi.org/10.3390/drones6070164