A Faster Approach to Quantify Large Wood Using UAVs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Surveys
2.3. Arcgis Approach
2.4. Agisoft Approach
2.5. Measurement Time Recording
3. Results
3.1. Field Surveys, Arcgis Approach and Agisoft Approach
3.2. Measurement Time Recording
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jackson, C.R.; Sturm, C.A. Woody Debris and Channel Morphology in First- and Second-Order Forested Channels in Washington’s Coast Ranges. Water Resour. Res. 2002, 38, 16-1–16-14. [Google Scholar] [CrossRef] [Green Version]
- Gurnell, A.M.; Pié Gay, H.; Swanson, F.J.; Gregory, S.V. Large Wood and Fluvial Processes. Freshw. Biol. 2002, 47, 601–619. [Google Scholar] [CrossRef] [Green Version]
- Spreitzer, G.; Tunnicliffe, J.; Friedrich, H. Using Structure from Motion Photogrammetry to Assess Large Wood (LW) Accumulations in the Field. Geomorphology 2019, 346, 106851. [Google Scholar] [CrossRef]
- Picco, L.; Scalari, C.; Iroumé, A.; Mazzorana, B.; Andreoli, A. Large Wood Load Fluctuations in an Andean Basin. Earth Surf. Process. Landf. 2021, 46, 371–384. [Google Scholar] [CrossRef]
- Mazzorana, B.; Picco, L.; Rainato, R.; Iroumé, A.; Ruiz-Villanueva, V.; Rojas, C.; Valdebenito, G.; Iribarren-Anacona, P.; Melnick, D. Cascading Processes in a Changing Environment: Disturbances on Fluvial Ecosystems in Chile and Implications for Hazard and Risk Management. Sci. Total Environ. 2019, 655, 1089–1103. [Google Scholar] [CrossRef]
- Piégay, H.; Thévenet, A.; Citteio, A. Input, Storage and Distribution of Large Woody. Catena 1999, 35, 19–39. [Google Scholar] [CrossRef]
- Gurnell, A.M.; Petts, G.E.; Hannah, D.M.; Smith, B.P.G.; Edwards, P.J.; Kollmann, J.; Ward, J.V.; Tockner, K. Wood Storage within the Active Zone of a Large European Gravel-Bed River. Geomorphology 2000, 34, 55–72. [Google Scholar] [CrossRef]
- Andreoli, A.; Comiti, F.; Lenzi, M.A. Characteristics, Distribution and Geomorphic Role of Large Woody Debris in a Mountain Stream of the Chilean Andes. Earth Surf. Process. Landf. 2007, 32, 1675–1692. [Google Scholar] [CrossRef]
- Wohl, E.; Cadol, D. Neighborhood Matters: Patterns and Controls on Wood Distribution in Old-Growth Forest Streams of the Colorado Front Range, USA. Geomorphology 2011, 125, 132–146. [Google Scholar] [CrossRef]
- Wohl, E.; Lininger, K.B.; Fox, M.; Baillie, B.R.; Erskine, W.D. Instream Large Wood Loads across Bioclimatic Regions. Ecol. Manag. 2017, 404, 370–380. [Google Scholar] [CrossRef]
- Ulloa, H.; Iroumé, A.; Picco, L.; Korup, O.; Lenzi, M.A.; Mao, L.; Ravazzolo, D. Massive Biomass Flushing despite Modest Channel Response in the Rayas River Following the 2008 Eruption of Chaitén Volcano, Chile. Geomorphology 2015, 250, 397–406. [Google Scholar] [CrossRef]
- Livers, B.; Lininger, K.B.; Kramer, N.; Sendrowski, A. Porosity Problems: Comparing and Reviewing Methods for Estimating Porosity and Volume of Wood Jams in the Field. Earth Surf. Process. Landf. 2020, 45, 3336–3353. [Google Scholar] [CrossRef]
- Marcus, W.A.; Marston, R.A.; Colvard, C.R.C.; Gray, R.D. Mapping the Spatial and Temporal Distributions of Woody Debris in Streams of the Greater Yellowstone Ecosystem, USA. Geomorphology 2002, 44, 323–335. [Google Scholar] [CrossRef] [Green Version]
- Marcus, W.A.; Legleiter, C.J.; Aspinall, R.J.; Boardman, J.W.; Crabtree, R.L. High Spatial Resolution Hyperspectral Mapping of In-Stream Habitats, Depths, and Woody Debris in Mountain Streams. Geomorphology 2003, 55, 363–380. [Google Scholar] [CrossRef]
- Atha, J.B. Identification of Fluvial Wood Using Google Earth. River Res. Appl. 2014, 30, 857–864. [Google Scholar] [CrossRef]
- Ulloa, H.; Iroumé, A.; Mao, L.; Andreoli, A.; Diez, S.; Lara, L.E. Use of Remote Imagery to Analyse Changes in Morphology and Longitudinal Large Wood Distribution in the Blanco River After the 2008 Chaitén Volcanic Eruption, Southern Chile. Geogr. Ann. Ser. A Phys. Geogr. 2015, 97, 523–541. [Google Scholar] [CrossRef]
- Kasprak, A.; Magilligan, F.J.; Nislow, K.H.; Snyder, N.P. A Lidar-Derived Evaluation of Watershed-Scale Large Woody Debris Sources and Recruitment Mechanisms: Coastal Maine, USA. River Res. Appl. 2012, 28, 1462–1476. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez de Tanago, J.; Lau, A.; Bartholomeus, H.; Herold, M.; Avitabile, V.; Raumonen, P.; Martius, C.; Goodman, R.C.; Disney, M.; Manuri, S.; et al. Estimation of Above-Ground Biomass of Large Tropical Trees with Terrestrial LiDAR. Methods Ecol. Evol. 2018, 9, 223–234. [Google Scholar] [CrossRef] [Green Version]
- Boivin, M.; Bélanger, B. Using a Terrestrial LIDAR for Monitoring of Large Woody Debris Jams in Gravel Bed Rivers. In Proceedings of the 7th Gravel Bed Rivers Conference, Tadoussac, QC, Canada, 5–10 September 2010. [Google Scholar]
- Tonon, A.; Picco, L.; Ravazzolo, D.; Lenzi, M.A. Using a Terrestrial Laser Scanner to Detect Wood Characteristics in Gravel-Bed Rivers. J. Agric. Eng. 2014, 45, 161–167. [Google Scholar] [CrossRef] [Green Version]
- Grigillo, D.; Gvozdanović, M.; Anžur, T.; Vezočnik, A. Determination of Large Wood Accumulation in a Steep Forested Torrent Using Laser Scanning. Eng. Geol. Soc. Territ. 2015, 3, 127–130. [Google Scholar]
- Entwistle, N.; Heritage, G.; Milan, D. Recent Remote Sensing Applications for Hydro and Morphodynamic Monitoring and Modelling. Earth Surf. Process. Landf. 2018, 43, 2283–2291. [Google Scholar] [CrossRef]
- Hackney, C.; Clayton, A. Unmanned Aerial Vehicles (UAVs) and Their Application in Geomorphic Mapping. In Geomorphological Techniques; British Society for Geomorphology: London, UK, 2015. [Google Scholar]
- Tamminga, A.D.; Eaton, B.C.; Hugenholtz, C.H. UAS-Based Remote Sensing of Fluvial Change Following an Extreme Flood Event. Earth Surf. Process. Landf. 2015, 40, 1464–1476. [Google Scholar] [CrossRef]
- Turner, D.; Lucieer, A.; Watson, C. An Automated Technique for Generating Georectified Mosaics from Ultra-High Resolution Unmanned Aerial Vehicle (UAV) Imagery, Based on Structure from Motion (SFM) Point Clouds. Remote Sens. 2012, 4, 1392–1410. [Google Scholar] [CrossRef] [Green Version]
- Turner, D.; Lucieer, A.; Malenovský, Z.; King, D.H.; Robinson, S.A. Spatial Co-Registration of Ultra-High Resolution Visible, Multispectral and Thermal Images Acquired with a Micro-UAV over Antarctic Moss Beds. Remote Sens. 2014, 6, 4003–4024. [Google Scholar] [CrossRef] [Green Version]
- Woodget, A.S.; Fyffe, C.; Carbonneau, P.E. From Manned to Unmanned Aircraft: Adapting Airborne Particle Size Mapping Methodologies to the Characteristics of SUAS and SfM. Earth Surf. Process. Landf. 2018, 43, 857–870. [Google Scholar] [CrossRef]
- Javernick, L.; Brasington, J.; Caruso, B. Modeling the Topography of Shallow Braided Rivers Using Structure-from-Motion Photogrammetry. Geomorphology 2014, 213, 166–182. [Google Scholar] [CrossRef]
- Lucieer, A.; de Jong, S.M.; Turner, D. Mapping Landslide Displacements Using Structure from Motion (SfM) and Image Correlation of Multi-Temporal UAV Photography. Prog. Phys. Geogr. 2014, 38, 97–116. [Google Scholar] [CrossRef]
- Smith, M.W.; Vericat, D. From Experimental Plots to Experimental Landscapes: Topography, Erosion and Deposition in Sub-Humid Badlands from Structure-from-Motion Photogrammetry. Earth Surf. Process. Landf. 2015, 40, 1656–1671. [Google Scholar] [CrossRef] [Green Version]
- Llena, M.; Vericat, D.; Martínez-Casasnovas, J.A. Application of Structure from Motion (SfM) Algorithms for the Historical Analysis of Changes in Fluvial Geomorphology. Cuatern. Geomorfol. 2018, 32, 53–73. [Google Scholar] [CrossRef] [Green Version]
- Woodget, A.S.; Austrums, R. Subaerial Gravel Size Measurement Using Topographic Data Derived from a UAV-SfM Approach. Earth Surf. Process. Landf. 2017, 42, 1434–1443. [Google Scholar] [CrossRef]
- Bakker, M.; Lane, S.N. Archival Photogrammetric Analysis of River–Floodplain Systems Using Structure from Motion (SfM) Methods. Earth Surf. Process. Landf. 2017, 42, 1274–1286. [Google Scholar] [CrossRef] [Green Version]
- Truksa, T.; Browman, J.; Goodge, J. Can Drones Measure LWD High Resolution Aerial Imagery and Structure from Motion as a Method for Quantifying Instream Wood. In Proceedings of the GSA Annual Meeting, Seattle, WA, USA, 22–25 October 2017; p. 12. [Google Scholar]
- Sanhueza, D.; Picco, L.; Ruiz-Villanueva, V.; Iroumé, A.; Ulloa, H.; Barrientos, G. Quantification of Fluvial Wood Using UAVs and Structure from Motion. Geomorphology 2019, 345, 106837. [Google Scholar] [CrossRef]
- Major, J.J.; Pierson, T.C.; Hoblitt, R.P.; Moreno, H. Flujos Piroclásticos Asociados a La Erupción 2008-2009 Del Volcán Chaitén: Perturbación Del Bosque, Depósitos y Dinámica. Andean Geol. 2013, 40, 324–358. [Google Scholar] [CrossRef] [Green Version]
- Major, J.J.; Bertin, D.; Pierson, T.C.; Amigo, Á.; Iroumé, A.; Ulloa, H.; Castro, J. Extraordinary Sediment Delivery and Rapid Geomorphic Response Following the 2008–2009 Eruption of Chaitén Volcano, Chile. Water Resour. Res. 2016, 52, 5075–5094. [Google Scholar] [CrossRef]
- Swanson, F.J.; Jones, J.A.; Crisafulli, C.M.; Lara, A. Efectos de Los Procesos Volcánicos e Hidrológicos Sobre La Vegetación Forestal: El Volcán Chaitén, Chile. Andean Geol. 2013, 40, 359–391. [Google Scholar] [CrossRef] [Green Version]
- Martini, L.; Picco, L.; Iroumé, A.; Cavalli, M. Sediment Connectivity Changes in an Andean Catchment Affected by Volcanic Eruption. Sci. Total Environ. 2019, 692, 1209–1222. [Google Scholar] [CrossRef]
- Donoso, Z. Claudio Reseña Ecológica de Los Bosques Mediterráneos de Chile. Bosque 1982, 4, 117–146. [Google Scholar] [CrossRef]
- Iroumé, A.; Andreoli, A.; Comiti, F.; Ulloa, H.; Huber, A. Large Wood Abundance, Distribution and Mobilization in a Third Order Coastal Mountain Range River System, Southern Chile. Ecol. Manag. 2010, 260, 480–490. [Google Scholar] [CrossRef]
- Thevenet, A.; Citterio, A.; Piegay, A.H. A New Methodology for the Assessment of Large Woddy Debris Accumulations on Highly Modified Rivers (Example of Two French Piedmont Rivers). Regul. Rivers Res. Manag. Int. J. Dev. River Res. Manag. 1998, 14, 467–483. [Google Scholar] [CrossRef]
- Dixon, S.J. A Dimensionless Statistical Analysis of Logjam Form and Process. Ecohydrology 2016, 9, 1117–1129. [Google Scholar] [CrossRef] [Green Version]
- Heritage, G.L.; Milan, D.J.; Large, A.R.G.; Fuller, I.C. Influence of Survey Strategy and Interpolation Model on DEM Quality. Geomorphology 2009, 112, 334–344. [Google Scholar] [CrossRef]
- Arun, P.V. A Comparative Analysis of Different DEM Interpolation Methods. Egypt. J. Remote Sens. Space Sci. 2013, 16, 133–139. [Google Scholar]
- Tonon, A.; Iroumé, A.; Picco, L.; Oss-Cazzador, D.; Lenzi, M.A. Temporal Variations of Large Wood Abundance and Mobility in the Blanco River Affected by the Chaitén Volcanic Eruption, Southern Chile. Catena 2017, 156, 149–160. [Google Scholar] [CrossRef]
- Kreuzbug, F. Ganulometría y Competencia El Río Blanco Este (Sur de Chile). Impactado Por La Erupción Del Volcán Calbuco En 2015. Ph.D. Thesis, Universidad Austral de Chile, Valdivia, Chile, 2019. [Google Scholar]
- Smith, G. Facies Sequences and Geometries in Continental Volcaniclastic Sediments. In Sedimentation in Volcanic Settings; Society for Sedimentary Geology: Tulsa, OK, USA, 1991. [Google Scholar]
- Iroumé, A.; Paredes, A.; Garbarino, M.; Morresi, D.; Batalla, R.J. Post-Eruption Morphological Evolution and Vegetation Dynamics of the Blanco River, Southern Chile. J. South Am. Earth Sci. 2020, 104, 102809. [Google Scholar] [CrossRef]
- Mixon, E.E.; Singer, B.S.; Jicha, B.R.; Ramirez, A. Calbuco, a Monotonous Andesitic High-Flux Volcano in the Southern Andes, Chile. J. Volcanol. Geotherm. Res. 2021, 416, 107279. [Google Scholar] [CrossRef]
(A) | BR | BER | (B) | BR | BER |
---|---|---|---|---|---|
Diameter (m) Minimum Q1 Median Mean Q3 Maximum IQR | 0.10 0.14 0.20 0.25 0.30 1.15 0.16 | 0.10 0.13 0.20 0.24 0.31 1.10 0.18 | Field Volume (m3) Minimum Q1 Median Mean Q3 Maximum IQR | 0.06 0.47 0.98 4.69 3.81 81.41 3.34 | 0.04 0.31 1.21 1.81 2.82 11.10 2.51 |
Length (m) Minimum Q1 Median Mean Q3 Maximum IQR | 1.00 1.60 2.40 3.48 4.00 27.90 2.40 | 0.10 0.13 0.20 0.24 0.31 1.10 0.18 | Agisoft Volume (m3) Minimum Q1 Median Mean Q3 Maximum IQR | 0.05 0.59 1.57 6.15 3.30 129 2.71 | 0.06 0.40 1.48 2.06 3.35 11.99 2.95 |
Volume (m3) Minimum Q1 Median Mean Q3 Maximum IQR | 0.01 0.03 0.08 0.34 0.26 12.25 0.23 | 0.01 0.03 0.08 0.22 0.17 4.84 0.13 | Arcgis Volume (m3) Minimum Q1 Median Mean Q3 Maximum IQR | 0.06 0.57 1.29 5.31 4.14 92.38 3.57 | 0.09 1.84 4.14 10.89 9.91 89.52 8.07 |
Measurement Time | ||||
---|---|---|---|---|
BR | BER | |||
Arcgis | Agisoft | Arcgis | Agisoft | |
hh:mm:ss | hh:mm:ss | hh:mm:ss | hh:mm:ss | |
Total | 04:34:43 | 00:44:51 | 04:23:05 | 00:45:06 |
Mean | 00:07:25 | 00:01:13 | 00:05:51 | 00:01:00 |
Maximum | 00:45:21 | 00:13:00 | 00:13:29 | 00:06:00 |
Minimum | 00:03:26 | 00:00:20 | 00:03:44 | 00:00:20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanhueza, D.; Picco, L.; Paredes, A.; Iroumé, A. A Faster Approach to Quantify Large Wood Using UAVs. Drones 2022, 6, 218. https://doi.org/10.3390/drones6080218
Sanhueza D, Picco L, Paredes A, Iroumé A. A Faster Approach to Quantify Large Wood Using UAVs. Drones. 2022; 6(8):218. https://doi.org/10.3390/drones6080218
Chicago/Turabian StyleSanhueza, Daniel, Lorenzo Picco, Alberto Paredes, and Andrés Iroumé. 2022. "A Faster Approach to Quantify Large Wood Using UAVs" Drones 6, no. 8: 218. https://doi.org/10.3390/drones6080218
APA StyleSanhueza, D., Picco, L., Paredes, A., & Iroumé, A. (2022). A Faster Approach to Quantify Large Wood Using UAVs. Drones, 6(8), 218. https://doi.org/10.3390/drones6080218