Pre-Archaeological Investigation by Integrating Unmanned Aerial Vehicle Aeromagnetic Surveys and Soil Analyses
Abstract
:1. Introduction
2. Geological and Archaeological Background
3. Materials and Methods
3.1. UAV Aeromagnetic System
3.2. Field Sampling
3.3. Experimental Methods
4. Results
4.1. UAV Aeromagnetic Anomaly
4.2. Magnetic Mineralogy
4.3. Rock Magnetism
4.4. Sedimentary Environment and Provenance
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Capozzoli, L.; De Martino, G.; Capozzoli, V.; Duplouy, A.; Henning, A.; Rizzo, E. The pre-Roman hilltop settlement of Monte Torretta di Pietragalla: Preliminary results of the geophysical survey. Archaeol. Prospect. 2020, 1–14. [Google Scholar] [CrossRef]
- Fassbinder, J.W.E. Seeing beneath the farmland, steppe and desert soil: Magnetic prospecting and soil magnetism. J. Archaeol. Sci. 2015, 56, 85–95. [Google Scholar] [CrossRef]
- Jordanova, N.; Jordanova, D.; Tcherkezova, E.; Popov, H.; Mokreva, A.; Georgiev, P.; Stoychev, R. Identification and Classification of Archeological Materials From Bronze Age Gold Mining Site Ada Tepe (Bulgaria) Using Rock Magnetism. Geochem. Geophys. Geosyst. 2020, 21, e2020GC009374. [Google Scholar] [CrossRef]
- Bigman, D.P.; Day, D.J.; Balco, W.M. The roles of macro- and micro-scale geophysical investigations to guide and monitor excavations at a Middle Woodland site in northern Georgia, USA. Archaeol. Prospect. 2022, 29, 243–257. [Google Scholar] [CrossRef]
- Derda, T.; Gwiazda, M.; Misiewicz, K.; Malkowski, W. Marea/Northern Hawwariya in northern Egypt: Integrated results of non-invasive and excavation works. Archaeol. Prospect. 2021, 28, 123–136. [Google Scholar] [CrossRef]
- Pro, C.; Caldeira, B.; de Tena, M.T.; Charro, C.; Oliveira, R.J.; Borges, J.F.; Mayoral, V. Exploring the Consistency of Data Collected in Archaeological Geophysics: A Case Study from the Iron Age Hillfort of Villasviejas del Tamuja (Extremadura, Spain). Remote Sens. 2020, 12, 1989. [Google Scholar] [CrossRef]
- Aveling, E. Archaeology-Magnetic trace of a giant henge. Nature 1997, 390, 232–233. [Google Scholar] [CrossRef]
- Carrancho, A.; Villalain, J.J.; Vallverdu, J.; Carbonell, E. Is it possible to identify temporal differences among combustion features in Middle Palaeolithic palimpsests? The archaeomagnetic evidence: A case study from level O at the Abric Romaní rock-shelter (Capellades, Spain). Quat. Int. 2016, 417, 39–50. [Google Scholar] [CrossRef]
- Fassbinder, J. Magnetometry for archaeologists. Archaeol. Prospect. 2010, 17, 271–272. [Google Scholar] [CrossRef]
- Maki, D. Lightning strikes and prehistoric ovens: Determining the source of magnetic anomalies using techniques of environmental magnetism. Geoarchaeol.-Int. J. 2005, 20, 449–459. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, V.; Becken, M.; Schmalzl, J. A UAV-borne magnetic survey for archaeological prospection of a Celtic burial site. First Break 2020, 38, 61–66. [Google Scholar] [CrossRef]
- Birch, T.; Scholger, R.; Walach, G.; Stremke, F.; Cech, B. Finding the invisible smelt: Using experimental archaeology to critically evaluate fieldwork methods applied to bloomery iron production remains. Archaeol. Anthropol. Sci. 2015, 7, 73–87. [Google Scholar] [CrossRef]
- Costanzo-Alvarez, V.; Suarez, N.; Aldana, M.; Hernandez, M.C.; Campos, C. Preliminary dielectric and rock magnetic results for a set of prehistoric Amerindian pottery samples from different Venezuelan Islands. Earth Planets Space 2006, 58, 1423–1431. [Google Scholar] [CrossRef]
- Rosendahl, D.; Lowe, K.M.; Wallis, L.A.; Ulm, S. Integrating geoarchaeology and magnetic susceptibility at three shell mounds: A pilot study from Mornington Island, Gulf of Carpentaria, Australia. J. Archaeol. Sci. 2014, 49, 21–32. [Google Scholar] [CrossRef]
- Tite, M.s.; Mullins, C. Enhancement of the Magnetic Susceptibility of Soil on Archaeological Sites. Archaeometry 1971, 13, 209–219. [Google Scholar] [CrossRef]
- Cheyney, S.; Fishwick, S.; Hill, I.A.; Linford, N.T. Successful adaptation of three-dimensional inversion methodologies for archaeological-scale, total-field magnetic data sets. Geophys. J. Int. 2015, 202, 1271–1288. [Google Scholar] [CrossRef]
- Pickartz, N.; Rabbel, W.; Rassmann, K.; Hofmann, R.; Ohlrau, R.; Thorwart, M.; Wilken, D.; Wunderlich, T.; Videiko, M.; Mueller, J. Inverse Filtering of Magnetic Prospection Data-A Gateway to the Social Structure of Cucuteni-Tripolye Settlements? Remote Sens. 2022, 14, 484. [Google Scholar] [CrossRef]
- Smekalova, T.; Bevan, B.; Kashuba, M.; Lisetskii, F.; Borisov, A.; Kashirskaya, N. Magnetic surveys locate Late Bronze Age corrals. Archaeol. Prospect. 2021, 28, 3–16. [Google Scholar] [CrossRef]
- Karamitrou, A.; Bogiatzis, P.; Tsokas, G.N. Fusion of geophysical images in the study of archaeological sites. Archaeol. Prospect. 2020, 27, 119–133. [Google Scholar] [CrossRef]
- Maher, B.A.; Mutch, T.J.; Cunningham, D. Magnetic and geochemical characteristics of Gobi Desert surface sediments: Implications for provenance of the Chinese Loess Plateau. Geology 2009, 37, 279–282. [Google Scholar] [CrossRef]
- Kosterov, A.; Kovacheva, M.; Kostadinova-Avramova, M.; Minaev, P.; Salnaia, N.; Surovitskii, L.; Yanson, S.; Sergienko, E.; Kharitonskii, P. High-coercivity magnetic minerals in archaeological baked clay and bricks. Geophys. J. Int. 2021, 224, 1257–1272. [Google Scholar] [CrossRef]
- Gavazzi, B.; Le Maire, P.; de Lepinay, J.M.; Calou, P.; Munschya, M. Fluxgate three-component magnetometers for cost-effective ground, UAV and airborne magnetic surveys for industrial and academic geoscience applications and comparison with current industrial standards through case studies. Geomech. Energy Environ. 2019, 20, 100117. [Google Scholar] [CrossRef]
- He, X.; Yang, X.; Luo, Z.; Guan, T. Application of unmanned aerial vehicle (UAV) thermal infrared remote sensing to identify coal fires in the Huojitu coal mine in Shenmu city, China. Sci. Rep. 2020, 10, 13895. [Google Scholar] [CrossRef]
- Kolster, M.E.; Døssing, A. Scalar magnetic difference inversion applied to UAV-based UXO detection. Geophys. J. Int. 2021, 224, 468–486. [Google Scholar] [CrossRef]
- Li, Z.P.; Gao, S.; Wang, X.B. New method of aeromagnetic surveys with rotorcraft UAV in particular areas. Chin. J. Geophys.-Chin. Ed. 2018, 61, 3825–3834. [Google Scholar] [CrossRef]
- Zheng, Y.X.; Li, S.Y.; Xing, K.; Zhang, X.J. Unmanned Aerial Vehicles for Magnetic Surveys: A Review on Platform Selection and Interference Suppression. Drones 2021, 5, 93. [Google Scholar] [CrossRef]
- King, J.W.; Channell, J.E.T. Sedimentary magnetism, environmental magnestism, and magnestostratigraphy. Rev. Geophys. 1991, 29, 358–370. [Google Scholar] [CrossRef]
- Oldfield, F. Environmental Magnetism—A Personal Perspective. Quat. Sci. Rev. 1991, 10, 73–85. [Google Scholar] [CrossRef]
- Vandenberghe, J.; Sun, Y.; Wang, X.; Abels, H.A.; Liu, X. Grain-size characterization of reworked fine-grained aeolian deposits. Earth-Sci. Rev. 2018, 177, 43–52. [Google Scholar] [CrossRef]
- Ye, D. The geographical environment for developing foreign-oriented economy in huizhou municipality. Trop. Geogr. 1990, 10, 69–77. [Google Scholar]
- Kuang, J.; Qi, S.; Wang, S.; Xiao, Z.; Zhang, M.; Zhao, X.; Gan, H. Granite Intrusion in Huizhou, Guangdong Province and Its Geothermal Implications. Earth Sci. 2020, 45, 1466–1480. [Google Scholar] [CrossRef]
- Zhang, M.; Kuang, J.; Xiao, Z.C.; Wang, S.; Qi, S.H.; Chen, X.X. Geological Evolution since the Yanshanian in Huizhou, Guangdong Province: New Implications for the Tectonics of South China. Earth Sci. 2021, 46, 242–258. [Google Scholar] [CrossRef]
- Zhang, Y. The Archaeological Discovery and its Value in Huizhou’s Neolithic Age and the Spring and Autumn Warring Period. J. Huizhou Univ. 2018, 38, 41–46. [Google Scholar]
- Zheng, H.; Zheng, C. The Boundary State Built by Luo Yue during the Shang and Zhou Dynasties-Luo Yue Cultural Research Series (twenty). J. Guangxi Inst. Soc. 2020, 31, 93–96. [Google Scholar]
- Cheng, L. The Bronze Civilization in Lingnan-Hengling Mountain Cemetery Reveals the Secret of the Ancient Fulou Country. Pop. Archaeol. 2016, 1, 79–83. [Google Scholar]
- Alken, P.; Thébault, E.; Beggan, C.D.; Amit, H.; Aubert, J.; Baerenzung, J.; Bondar, T.N.; Brown, W.J.; Califf, S.; Chambodut, A.; et al. International Geomagnetic Reference Field: The thirteenth generation. Earth Planets Space 2021, 73, 49. [Google Scholar] [CrossRef]
- Chen, H.Y.; Wang, R.; Miao, M.; Liu, X.C.; Ma, Y.H.; Hattori, K.; Han, P. A Statistical Study of the Correlation between Geomagnetic Storms and M ≥7.0 Global Earthquakes during 1957–2020. Entropy 2020, 22, 1270. [Google Scholar] [CrossRef]
- Stewart, I.C.F. A simple approximation for low-latitude magnetic reduction-to-the-pole. J. Appl. Geophys. 2019, 166, 57–67. [Google Scholar] [CrossRef]
- Jiabo, L. PyIRM. Available online: https://github.com/botaoxiongyong/pyIRM (accessed on 16 July 2022).
- Harrison, R.J.; Feinberg, J.M. FORCinel: An improved algorithm for calculating first-order reversal curve distributions using locally weighted regression smoothing. Geochem. Geophys. Geosyst. 2008, 9, Q05016. [Google Scholar] [CrossRef]
- Torrent, J.; Barron, V. The visible diffuse reflectance spectrum in relation to the color and crystal properties of hematite. Clays Clay Miner. 2003, 51, 309–317. [Google Scholar] [CrossRef]
- Lu, H.Y.; Xia, X.C.; Liu, J.Q.; Qin, X.G.; Wang, F.B.; Yidilisi, A.; Zhou, L.P.; Mu, G.J.; Jiao, Y.X.; Li, J.Z. A preliminary study of chronology for a newly-discovered ancient city and five archaeological sites in Lop Nor, China. Chin. Sci. Bull. 2010, 55, 63–71. [Google Scholar] [CrossRef]
- Wu, T.H.; Xu, B.; Wang, X.R. How ancient Chinese constellations are applied in the city planning? An example on the planning principles employed in Xianyang, the capital city of Qin Dynasty. Sci. Bull. 2016, 61, 1634–1636. [Google Scholar] [CrossRef]
- Oldfield, F.; Hunt, A.; Jones, M.D.H.; Chester, R.; Dearing, J.A.; Olsson, L.; Prospero, J.M. Magnetic Differentiation of Atmospheric Dusts. Nature 1985, 317, 516–518. [Google Scholar] [CrossRef]
- Maher, B.A. Magnetic Properties of Some Synthetic Submicron Magnetites. Geophys. J. Int. 2007, 94, 83–96. [Google Scholar] [CrossRef]
- King, J.; Banerjee, S.K.; Marvin, J.; Ozdemir, O. A comparison of different magnetic methods for determining the relative grain size of magnetite in natural materials: Some results from lake sediments. Earth Planet. Sci. Lett. 1982, 59, 404–419. [Google Scholar] [CrossRef]
- Liu, Q.S.; Roberts, A.P.; Larrasoana, J.C.; Banerjee, S.K.; Guyodo, Y.; Tauxe, L.; Oldfield, F. Environmental magnetism: Principles and applications. Rev. Geophys. 2012, 50. [Google Scholar] [CrossRef]
- Hrouda, F. A Technique for the Measurement of Thermal-Changes of Magnetic-Susceptibility of Weakly Magnetic Rocks by the Cs-2 Apparatus and Kly-2 Kappabridge. Geophys. J. Int. 1994, 118, 604–612. [Google Scholar] [CrossRef]
- Heslop, D.; Dekkers, M.J.; Kruiver, P.P.; van Oorschot, I.H.M. Analysis of isothermal remanent magnetization acquisition curves using the expectation-maximization algorithm. Geophys. J. Int. 2002, 148, 58–64. [Google Scholar] [CrossRef]
- Dunlop, D.J. Theory and application of the Day plot (M-rs/M-s versus H-cr/H-c) 1. Theoretical curves and tests using titanomagnetite data. J. Geophys. Res.-Solid Earth 2002, 107, 2056. [Google Scholar] [CrossRef]
- Roberts, A.P.; Cui, Y.L.; Verosub, K.L. Wasp-waisted hysteresis loops: Mineral magnetic characteristics and discrimination of components in mixed magnetic systems. J. Geophys. Res.-Solid Earth 1995, 100, 17909–17924. [Google Scholar] [CrossRef]
- Roberts, A.P.; Pike, C.R.; Verosub, K.L. First-order reversal curve diagrams: A new tool for characterizing the magnetic properties of natural samples. J. Geophys. Res.-Solid Earth 2000, 105, 28461–28475. [Google Scholar] [CrossRef]
- Liu, Q.S.; Torrent, J.; Barron, V.; Duan, Z.Q.; Bloemendal, J. Quantification of hematite from the visible diffuse reflectance spectrum: Effects of aluminium substitution and grain morphology. Clay Miner. 2011, 46, 137–147. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature 1982, 299, 715–717. [Google Scholar] [CrossRef]
- Wedepohl, K.H. The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Sheldon, N.D.; Tabor, N.J. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-Sci. Rev. 2009, 95, 1–52. [Google Scholar] [CrossRef]
- Blanco-Montenegro, I.; Montesinos, F.G.; Arnoso, J. Aeromagnetic anomalies reveal the link between magmatism and tectonics during the early formation of the Canary Islands. Sci. Rep. 2018, 8, 42. [Google Scholar] [CrossRef]
- Khesin, B.; Feinstein, S.; Vapnik, Y.; Itkis, S.; Leonhardt, R. Magnetic study of metamorphosed sedimentary rocks of the Hatrurim formation, Israel. Geophys. J. Int. 2005, 162, 49–63. [Google Scholar] [CrossRef]
- Leseane, K.; Betts, P.; Armit, R.; Ailleres, L. Structural overprinting criteria determined from regional aeromagnetic data: An example from the Hill End Trough, East Gondwana. Tectonophysics 2020, 797, 228660. [Google Scholar] [CrossRef]
- Paoletti, V.; Gruber, S.; Varley, N.; D’Antonio, M.; Supper, R.; Motschka, K. Insights into the Structure and Surface Geology of Isla Socorro, Mexico, from Airborne Magnetic and Gamma-Ray Surveys. Surv. Geophys. 2016, 37, 601–623. [Google Scholar] [CrossRef]
- Salapare, R.C.; Dimalanta, C.B.; Ramos, N.T.; Manalo, P.C.; Faustino-Eslava, D.V.; Queano, K.L.; Yumul, G.P. Upper crustal structure beneath the Zambales Ophiolite Complex, Luzon, Philippines inferred from integrated gravity, magnetic and geological data. Geophys. J. Int. 2015, 201, 1522–1533. [Google Scholar] [CrossRef]
- Uwiduhaye, J.D.; Ngaruye, J.C.; Saibi, H. Defining potential mineral exploration targets from the interpretation of aeromagnetic data in western Rwanda. Ore Geol. Rev. 2021, 128, 103927. [Google Scholar] [CrossRef]
- Diarte-Blasco, P.; Casas, A.M.; Pocovi, A.; Villalain, J.J.; Munoz, A.; Beolchini, V.; Pueyo-Anchuela, O.; Pena-Chocarro, L. Interpretation of magnetic anomalies of geological and archaeological origins in a volcanic area (Tusculum site, Lazio, Italy): Methodological proposals. J. Appl. Geophys. 2020, 173, 103942. [Google Scholar] [CrossRef]
- Kaub, L.; Keller, G.; Bouligand, C.; Glen, J.M.G. Magnetic Surveys with Unmanned Aerial Systems: Software for Assessing and Comparing the Accuracy of Different Sensor Systems, Suspension Designs and Compensation Methods. Geochem. Geophys. Geosyst. 2021, 22, e2021GC009745. [Google Scholar] [CrossRef]
- Taylor, J.M.; Cappellaro, P.; Childress, L.; Jiang, L.; Budker, D.; Hemmer, P.R.; Yacoby, A.; Walsworth, R.; Lukin, M.D. High-sensitivity diamond magnetometer with nanoscale resolution. Nat. Phys. 2008, 4, 810–816. [Google Scholar] [CrossRef]
- Orengo, H.A.; Garcia-Molsosa, A.; Berganzo-Besga, I.; Landauer, J.; Aliende, P.; Tres-Martinez, S. New developments in drone-based automated surface survey: Towards a functional and effective survey system. Archaeol. Prospect. 2021, 28, 519–526. [Google Scholar] [CrossRef]
- Fassbinder, J.; Irlinger, W. Magnetometerprospektion eines endneolithischen Grabenwerkes bei Riekofen. Beiträge Archäol. Oberpfalz 1998, 2, 47–54. [Google Scholar]
- Quesnel, Y.; Jrad, A.; Mocci, F.; Gattacceca, J.; Mathe, P.E.; Parisot, J.C.; Hermitte, D.; Dumas, V.; Dussouillez, P.; Walsh, K.; et al. Geophysical Signatures of a Roman and Early Medieval Necropolis. Archaeol. Prospect. 2011, 18, 105–115. [Google Scholar] [CrossRef]
- Dalan, R.A. A review of the role of magnetic susceptibility in archaeogeophysical studies in the USA: Recent developments and prospects. Archaeol. Prospect. 2008, 15, 1–31. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, C.; Torrent, J.; Barrón, V.; Hu, P.; Jiang, Z.; Duan, Z. Factors Controlling Magnetism of Reddish Brown Soil Profiles from Calcarenites in Southern Spain: Dust Input or In-situ Pedogenesis? Front. Earth Sci. 2016, 4, 1–12. [Google Scholar] [CrossRef] [Green Version]
Module | Index | Performance |
---|---|---|
Magnetic module (magnetometer) | Type | Total magnetic field intensity |
Resolution | 0.0001 nT | |
Sensitivity | Better than 0.02 nT/√Hz | |
Range | 1000 nT–100,000 nT | |
Gradient tolerance | Maximum 100 nT/cm | |
Blind zone | Single equatorial plane ±7 degrees | |
Mount position Noise level (hover state) Sampling rate Power consumption Operating temperature | At the end of carbon fiber tube (1.5 m) 0.02 nT (fourth-order difference) Four optional modes (1, 2, 5, 10 Hz) 5 V, 3 W –30 °C to +60 °C | |
Flight platform module (UAV) | Positioning accuracy | Horizontal ±1.25 m (GPS) Vertical ±0.1 m (laser altimeter) |
Flight endurance | Maximum 55 min | |
Takeoff weight | Maximum 9 kg (recommend) | |
Wind resistance | Maximum 15 m/s | |
Obstacle avoidance | Vision and infrared |
Flight Quality Index | Survey Along North–South Line | Survey Along West–East Line |
---|---|---|
Average flight speed (m/s) | 8 | 8 |
Number of output data per second | 5 | 5 |
Survey line spacing (m) | 5 | 5 |
Data interval along line (m) | 1.6 | 1.6 |
Average flight height (m) | 28.3 | 28.3 |
Altitude standard deviation | 4.5 | 4.2 |
Dynamic noise (nT) | 0.0973 | 0.0954 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, W.; Qing, H.; Xu, X.; Liu, C.; Chen, S.; Zhong, Y.; Liu, J.; Li, Y.; Jiang, X.; Gao, D.; et al. Pre-Archaeological Investigation by Integrating Unmanned Aerial Vehicle Aeromagnetic Surveys and Soil Analyses. Drones 2022, 6, 243. https://doi.org/10.3390/drones6090243
Cao W, Qing H, Xu X, Liu C, Chen S, Zhong Y, Liu J, Li Y, Jiang X, Gao D, et al. Pre-Archaeological Investigation by Integrating Unmanned Aerial Vehicle Aeromagnetic Surveys and Soil Analyses. Drones. 2022; 6(9):243. https://doi.org/10.3390/drones6090243
Chicago/Turabian StyleCao, Wei, Hao Qing, Xing Xu, Chang Liu, Silin Chen, Yi Zhong, Jiabo Liu, Yuanjie Li, Xiaodong Jiang, Dalun Gao, and et al. 2022. "Pre-Archaeological Investigation by Integrating Unmanned Aerial Vehicle Aeromagnetic Surveys and Soil Analyses" Drones 6, no. 9: 243. https://doi.org/10.3390/drones6090243
APA StyleCao, W., Qing, H., Xu, X., Liu, C., Chen, S., Zhong, Y., Liu, J., Li, Y., Jiang, X., Gao, D., Jiang, Z., & Liu, Q. (2022). Pre-Archaeological Investigation by Integrating Unmanned Aerial Vehicle Aeromagnetic Surveys and Soil Analyses. Drones, 6(9), 243. https://doi.org/10.3390/drones6090243