Constrained Predictive Tracking Control for Unmanned Hexapod Robot with Tripod Gait
Abstract
:1. Introduction
- (1)
- A body-level trajectory tracking model based on the motion stride for hexapod robot is pioneeringly established, which quantitatively reveals the characteristics of the rhythmic motion of legged robots;
- (2)
- The quantitative relationship of stretch and yaw constraints of limb based on body stride and tripod gait is groundbreakingly modeled, which is used as an important consideration in designing the MPC-based optimal controller to ensure the structural integrity of the robot while achieving omnidirectional accurate trajectory tracking;
- (3)
- A method of defining the reference stride length based on the limb constraints and the integral mean is creatively proposed, which effectively takes into account the physical limitations and movement capabilities of the robot; meanwhile, a solution method of variable stride periods and the corresponding real-time replanning strategy are proposed, which effectively improve the tracking efficiency and real-time tracking ability of the robot.
2. Body-Level Kinematics
3. Constraints and Predictive Controller
3.1. Stretch and Yaw Constraints of Limb
3.2. Model Predictive Controller
4. Stride Period and Reference Stride
4.1. Determination of Stride Period
4.2. Replanning of Reference Stride
5. Simulations and Demonstrations
5.1. Setups of Robot and Reference Trajectory
5.2. Effect of the Constraints and the Replanning Strategy
5.3. Tracking Test
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Instantaneous relative pose of the center of body | |
Absolute pose of the center of body at the initial time of the i-th stride period | |
Instantaneous absolute pose of the center of body | |
Velocity of the center of body relative to the world coordinate system | |
Total stride length of the body movement in a stride period, and its reference value | |
Total yaw angle of the point away from axis, and its reference value | |
Total rotation angle of the body around axis, and its reference value | |
Interpolation function of the body movement, and its time derivative | |
State variable, and its reference value | |
Control input, and its reference value | |
Pose tracking error of the center of body | |
Stride error | |
Initial position coordinate of the foot relative to the body coordinate system | |
Homogeneous position coordinates of the stance phase and the swing phase relative to the frame , respectively | |
Unified homogeneous position coordinate of each foot relative to the frame | |
Homogeneous position coordinate of the hip joint relative to the frame | |
Horizontal position coordinate from the foot end to the hip joint | |
Horizontal stretch length of a limb described by the motion stride | |
Maximum horizontal stretch length from the foot end to the hip joint | |
Azimuth angle of the j-th limb relative to the body system | |
Pose error, stride error and stride error increment at time k, respectively | |
State variable at the time predicted at time k | |
Control variable and control increment at the time predicted at time k, respectively | |
Predictive state vector, predictive control vector and its increment at time k, respectively | |
Sampling step size | |
Dimensions of the state variable and the control variable, respectively | |
Preview horizon, and control horizon | |
Objective function at time k | |
Weight matrices corresponding to the predictive state vector and the predictive control increment, respectively | |
Effective maximum stride length, and its integral mean | |
Duration of the i-th stride period | |
Reference stride in the i-th stride period | |
Replanning reference stride in the i-th stride period | |
Joint angles of the four active pairs on one leg | |
Lengths of the four links on one leg | |
Height from body center to support surface |
References
- Chen, Z.; Wang, S.; Wang, J.; Xu, K.; Lei, T.; Zhang, H.; Wang, X.; Liu, D.; Si, J. Control strategy of stable walking for a hexapod wheel-legged robot. ISA Trans. 2021, 108, 367–380. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Wei, W.; Gao, Y.; Li, K.; Chen, R. Research on terrain recognition for gait selection of hexapod robot. IOP Conf. Ser. Mater. Sci. Eng. 2019, 611, 012072. [Google Scholar] [CrossRef]
- Ikeda, S.; Kono, H.; Watanabe, K.; Suzuki, H. Body calibration: Automatic inter-task mapping between multi-legged robots with different embodiments in transfer reinforcement learning. Actuators 2022, 11, 140. [Google Scholar] [CrossRef]
- Ren, G.; Chen, W.; Dasgupta, S.; Kolodziejski, C.; Wörgötter, F.; Manoonpong, P. Multiple chaotic central pattern generators with learning for legged locomotion and malfunction compensation. Inf. Sci. 2015, 294, 666–682. [Google Scholar] [CrossRef]
- Yuan, J.; Wang, Z.; Zhang, Z.; Xing, Y.; Ji, A. Mechanism design of a transformable crawling robot and feasibility analysis for the unstructured environment. Actuators 2022, 11, 60. [Google Scholar] [CrossRef]
- Barai, R.K.; Nonami, K. Optimal two-degree-of-freedom fuzzy control for locomotion control of a hydraulically actuated hexapod robot. Inf. Sci. 2007, 177, 1892–1915. [Google Scholar] [CrossRef]
- Wang, C.; Wang, D.; Gu, M.; Huang, H.; Wang, Z.; Yuan, Y.; Zhu, X.; Wei, W.; Fan, Z. Bioinspired environment exploration algorithm in swarm based on Lévy flight and improved artificial potential field. Drones 2022, 6, 122. [Google Scholar] [CrossRef]
- Guizzo, E. By leaps and bounds: An exclusive look at how boston dynamics is redefining robot agility. IEEE Spectr. 2019, 56, 34–39. [Google Scholar] [CrossRef]
- Bellicoso, C.D.; Bjelonic, M.; Wellhausen, L.; Holtmann, K.; Günther, F.; Tranzatto, M.; Fankhauser, P.; Hutter, M. Advances in real-world applications for legged robots. J. Field Robot. 2018, 35, 1311–1326. [Google Scholar] [CrossRef]
- Zhao, Y.; Chai, X.; Gao, F.; Qi, C. Obstacle avoidance and motion planning scheme for a hexapod robot Octopus-III. Robot. Auton. Syst. 2018, 103, 199–212. [Google Scholar] [CrossRef]
- Biswal, P.; Mohanty, P.K. Development of quadruped walking robots: A review. Ain Shams Eng. J. 2020, 12, 2017–2031. [Google Scholar] [CrossRef]
- Husbands, P.; Shim, Y.; Garvie, M.; Dewar, A.; Domcsek, N.; Graham, P.; Knight, J.; Nowotny, T.; Philippides, A. Recent advances in evolutionary and bio-inspired adaptive robotics: Exploiting embodied dynamics. Appl. Intell. 2021, 51, 6467–6496. [Google Scholar] [CrossRef]
- Chen, G.; Jin, B. Position-posture trajectory tracking of a six-legged walking robot. Int. J. Robot. Autom. 2019, 34, 24–37. [Google Scholar] [CrossRef]
- Bencherif, A.; Chouireb, F. A recurrent TSK interval type-2 fuzzy neural networks control with online structure and parameter learning for mobile robot trajectory tracking. Appl. Intell. 2019, 49, 3881–3893. [Google Scholar] [CrossRef]
- Zou, J.T.; Dai, X.Y. The development of a visual tracking system for a drone to follow an omnidirectional mobile robot. Drones 2022, 6, 113. [Google Scholar] [CrossRef]
- Sánchez, E.; Luviano, A.; Rosales, A. A robust GPI controller for trajectory tracking tasks in the limbs of a walking robot. Int. J. Control Autom. Syst. 2017, 15, 2786–2795. [Google Scholar] [CrossRef]
- Zhong, G.; Deng, H.; Xin, G.; Wang, H. Dynamic hybrid control of a hexapod walking robot: Experimental verification. IEEE Trans. Ind. Electron. 2016, 63, 5001–5011. [Google Scholar] [CrossRef]
- Chen, G.; Jin, B.; Chen, Y. Accurate and robust body position trajectory tracking of six-legged walking robots with nonsingular terminal sliding mode control method. Appl. Math. Model. 2020, 77, 1348–1372. [Google Scholar] [CrossRef]
- Chen, G.; Jin, B.; Chen, Y. Nonsingular fast terminal sliding mode posture control for six-legged walking robots with redundant actuation. Mechatronics 2018, 50, 1–15. [Google Scholar] [CrossRef]
- Wang, D.; Wei, W.; Wang, X.; Gao, Y.; Li, Y.; Yu, Q.; Fan, Z. Formation control of multiple mecanum-wheeled mobile robots with physical constraints and uncertainties. Appl. Intell. 2022, 52, 2510–2529. [Google Scholar] [CrossRef]
- Dai, L.; Yu, Y.; Zhai, D.H.; Huang, T.; Xia, Y. Robust model predictive tracking control for robot manipulators with disturbances. IEEE Trans. Ind. Electron. 2020, 68, 4288–4297. [Google Scholar] [CrossRef]
- Wang, D.; Wei, W.; Yeboah, Y.; Li, Y.; Gao, Y. A robust model predictive control strategy for trajectory tracking of omni-directional mobile robots. J. Intell. Robot. Syst. 2020, 98, 439–453. [Google Scholar] [CrossRef]
- Xiao, H.; Li, Z.; Yang, C.; Zhang, L.; Yuan, P.; Ding, L.; Wang, T. Robust stabilization of a wheeled mobile robot using model predictive control based on neurodynamics optimization. IEEE Trans. Ind. Electron. 2016, 64, 505–516. [Google Scholar] [CrossRef]
- Daneshmand, E.; Khadiv, M.; Grimminger, F.; Righetti, L. Variable horizon MPC with swing foot dynamics for bipedal walking control. IEEE Robot. Autom. Lett. 2021, 6, 2349–2356. [Google Scholar] [CrossRef]
- Scianca, N.; De Simone, D.; Lanari, L.; Oriolo, G. MPC for humanoid gait generation: Stability and feasibility. IEEE Trans. Robot. 2020, 36, 1171–1188. [Google Scholar] [CrossRef]
- Ding, Y.; Pandala, A.; Li, C.; Shin, Y.H.; Park, H.W. Representation-free model predictive control for dynamic motions in quadrupeds. IEEE Trans. Robot. 2021, 37, 1154–1171. [Google Scholar] [CrossRef]
- Hamed, K.A.; Kim, J.; Pandala, A. Quadrupedal locomotion via event-based predictive control and QP-based virtual constraints. IEEE Robot. Autom. Lett. 2020, 5, 4463–4470. [Google Scholar] [CrossRef]
- Dini, N.; Majd, V.J. An MPC-based two-dimensional push recovery of a quadruped robot in trotting gait using its reduced virtual model. Mech. Mach. Theory 2020, 146, 1–25. [Google Scholar] [CrossRef]
- Wang, D.; Pan, Q.; Shi, Y.; Hu, J.; Zhao, C. Efficient Nonlinear Model Predictive Control for Quadrotor Trajectory Tracking: Algorithms and Experiment. IEEE Trans. Cybern. 2021, 51, 5057–5068. [Google Scholar] [CrossRef]
- Hu, N.; Li, S.; Zhu, Y.; Gao, F. Constrained model predictive control for a hexapod robot walking on irregular terrain. J. Intell. Robot. Syst. 2019, 94, 179–201. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.; Wang, S.; Peng, H.; Wang, B.; Qi, W.; Zhang, L.; Su, H. Parallel structure of six wheel-legged robot trajectory tracking control with heavy payload under uncertain physical interaction. Assem. Autom. 2020, 40, 675–687. [Google Scholar] [CrossRef]
- Gao, Y.; Wei, W.; Wang, X.; Wang, D.; Li, Y.; Yu, Q. Trajectory tracking of multi-legged robot based on model predictive and sliding mode control. Inf. Sci. 2022, 606, 489–511. [Google Scholar] [CrossRef]
- Mayne, D.Q.; Rawlings, J.B.; Rao, C.V.; Scokaert, P.O. Constrained model predictive control: Stability and optimality. Automatica 2000, 36, 789–814. [Google Scholar] [CrossRef]
- Askari, M.; Moghavvemi, M.; Almurib, H.A.F.; Haidar, A.M. Stability of soft-constrained finite horizon model predictive control. IEEE Trans. Ind. Appl. 2017, 53, 5883–5892. [Google Scholar] [CrossRef]
- Monasterios, P.R.B.; Trodden, P.A. Model predictive control of linear systems with preview information: Feasibility, stability, and inherent robustness. IEEE Trans. Autom. Control 2018, 64, 3831–3838. [Google Scholar] [CrossRef]
- Astudillo, A.; Gillis, J.; Diehl, M.; Decré, W.; Pipeleers, G.; Swevers, J. Position and orientation tunnel-following NMPC of robot manipulators based on symbolic linearization in sequential convex quadratic programming. IEEE Robot. Autom. Lett. 2022, 7, 2867–2874. [Google Scholar] [CrossRef]
- Park, H.; Sun, J.; Pekarek, S.; Stone, P.; Opila, D.; Meyer, R.; Kolmanovsky, I.; DeCarlo, R. Real-time model predictive control for shipboard power management using the IPA-SQP approach. IEEE Trans. Control Syst. Technol. 2015, 23, 2129–2143. [Google Scholar] [CrossRef]
- Subathra, M.; Selvan, S.E.; Victoire, T.A.A.; Christinal, A.H.; Amato, U. A hybrid with cross-entropy method and sequential quadratic programming to solve economic load dispatch problem. IEEE Syst. J. 2014, 9, 1031–1044. [Google Scholar] [CrossRef]
- Wei, W.; Sun, J.; Gao, Y.; Yeboah, Y.; Huang, L. The system design and gait planning for walking-climbing hexapod. In Proceedings of the 2019 3rd International Conference Innovations Artificial Intelligence, Tokushima, Japan, 28–30 June 2019; Association for Computing Machinery: New York, NY, USA, 2019. Vol. Part F148152. pp. 208–212. [Google Scholar] [CrossRef]
- Cai, Z.; Gao, Y.; Wei, W.; Gao, T.; Xie, Z. Model design and gait planning of hexapod climbing robot. J. Phys. Conf. Ser. 2021, 1754, 012157. [Google Scholar] [CrossRef]
- Gao, Y.; Wei, W.; Wang, X.; Li, Y.; Wang, D.; Yu, Q. Feasibility, planning and control of ground-wall transition for a suctorial hexapod robot. Appl. Intell. 2021, 51, 5506–5524. [Google Scholar] [CrossRef]
Item | Symbol | Unit | Specification |
---|---|---|---|
Body radius | R | m | 0.18 |
Length of Link1 | m | 0.09 | |
Length of Link2 | m | 0.15 | |
Length of Link3 | m | 0.16 | |
Length of Link4 | m | 0.15 | |
Range of Joint1 | rad | ||
Range of Joint2 | rad | ||
Range of Joint3 | rad | ||
Range of Joint4 | rad |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Wang, D.; Wei, W.; Yu, Q.; Liu, X.; Wei, Y. Constrained Predictive Tracking Control for Unmanned Hexapod Robot with Tripod Gait. Drones 2022, 6, 246. https://doi.org/10.3390/drones6090246
Gao Y, Wang D, Wei W, Yu Q, Liu X, Wei Y. Constrained Predictive Tracking Control for Unmanned Hexapod Robot with Tripod Gait. Drones. 2022; 6(9):246. https://doi.org/10.3390/drones6090246
Chicago/Turabian StyleGao, Yong, Dongliang Wang, Wu Wei, Qiuda Yu, Xiongding Liu, and Yuhai Wei. 2022. "Constrained Predictive Tracking Control for Unmanned Hexapod Robot with Tripod Gait" Drones 6, no. 9: 246. https://doi.org/10.3390/drones6090246
APA StyleGao, Y., Wang, D., Wei, W., Yu, Q., Liu, X., & Wei, Y. (2022). Constrained Predictive Tracking Control for Unmanned Hexapod Robot with Tripod Gait. Drones, 6(9), 246. https://doi.org/10.3390/drones6090246