Fixed-Time Extended Observer-Based Adaptive Sliding Mode Control for a Quadrotor UAV under Severe Turbulent Wind
Abstract
:1. Introduction
2. Preliminaries
3. UAV Dynamics and the Von Karman Wind Model
4. FxtESO-Based ASMC Design
4.1. Fixed-Time Extended State Observer
4.2. Attitude Controller
4.3. Positioning Controller
4.4. Stability Analysis
- Matrix is the solution of Lyapunov equation with identity matrix .
5. Results
5.1. Disturbance Compensation
5.2. Comparison Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ASMC | Adaptive sliding mode control |
ESO | Extended state observer |
FxtESO | Fixed-time extended state observer |
NESO | Nonlinear extended state observer |
UAV | Unamnned Aerial Vehicle |
References
- Najm, A.A.; Ibraheem, I.K. Nonlinear PID controller design for a 6-DOF UAV quadrotor system. Eng. Sci. Technol. Int. J. 2019, 22, 1087–1097. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, J.; She, H.; Jin, H. Quadrotor UAV flight control via a novel saturation integral backstepping controller. Automatika 2019, 60, 193–206. [Google Scholar] [CrossRef]
- Labbadi, M.; Cherkaoui, M. Robust adaptive backstepping fast terminal sliding mode controller for uncertain quadrotor UAV. Aerosp. Sci. Technol. 2019, 93, 105306. [Google Scholar] [CrossRef]
- Labbadi, M.; Cherkaoui, M.; El houm, Y.; Guisser, M. Modeling and robust integral sliding mode control for a quadrotor unmanned aerial vehicle. In Proceedings of the 2018 IEEE 6th International Renewable and Sustainable Energy Conference (IRSEC), Rabat, Morocco, 5–8 December 2018; 2018; pp. 1–6. [Google Scholar]
- Nekoukar, V.; Dehkordi, N.M. Robust path tracking of a quadrotor using adaptive fuzzy terminal sliding mode control. Control. Eng. Pract. 2021, 110, 104763. [Google Scholar] [CrossRef]
- Li, S.; Yang, J.; Chen, W.H.; Chen, X. Disturbance Observer-Based Control: Methods and Applications; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Miranda-Moya, A.; Castañeda, H.; Wang, H. Turbulent Wind Gusts Estimation and Compensation via High-Gain Extended Observer-based Adaptive Sliding Mode for a Quadrotor UAV. In Proceedings of the IEEE 2021 International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece, 15–18 June 2021; pp. 476–481. [Google Scholar]
- Davoudi, B.; Taheri, E.; Duraisamy, K.; Jayaraman, B.; Kolmanovsky, I. Quad-rotor flight simulation in realistic atmospheric conditions. AIAA J. 2020, 58, 1992–2004. [Google Scholar] [CrossRef]
- Gao, Z.; Guo, G. Command-filtered fixed-time trajectory tracking control of surface vehicles based on a disturbance observer. Int. J. Robust Nonlinear Control. 2019, 29, 4348–4365. [Google Scholar] [CrossRef]
- Lyu, X.; Zhou, J.; Gu, H.; Li, Z.; Shen, S.; Zhang, F. Disturbance Observer Based Hovering Control of Quadrotor Tail-sitter VTOL UAVs Using H∞ Synthesis. IEEE Robot. Autom. Lett. 2018, 3, 2910–2917. [Google Scholar] [CrossRef]
- Wu, K.; Fan, B.; Zhang, X. Trajectory following control of UAVs with wind disturbance. In Proceedings of the 2017 36th Chinese Control Conference (CCC), Dalian, China, 26–28 June 2017; pp. 4993–4997. [Google Scholar]
- Yu, G.; Chen, Y.; Chen, Z.; Wu, H.; Cheng, L. Design of terminal sliding mode controller for a quadrotor UAV with disturbance observer. In Proceedings of the 2020 IEEE 39th Chinese Control Conference (CCC), Shenyang, China, 27–29 July 2020; pp. 2072–2077. [Google Scholar]
- Qin, L.; Zhou, W.; Li, L.; Jiang, W. Active disturbance rejection control system design for quadrotor. In Proceedings of the 2017 36th Chinese Control Conference (CCC), Dalian, China, 26–28 June 2017; pp. 6530–6534. [Google Scholar]
- Wu, C.; Yan, J.; Lin, H.; Wu, X.; Xiao, B. Fixed-time disturbance observer-based chattering-free sliding mode attitude tracking control of aircraft with sensor noises. Aerosp. Sci. Technol. 2021, 111, 106565. [Google Scholar] [CrossRef]
- Wu, S.; Chen, L.; Zhang, D.; Chen, J.; Shao, X. Disturbance observer based fixed time sliding mode control for spacecraft proximity operations with coupled dynamics. Adv. Space Res. 2020, 66, 2179–2193. [Google Scholar] [CrossRef]
- Wang, X.; Guo, J.; Tang, S.; Qi, S. Fixed-time disturbance observer based fixed-time back-stepping control for an air-breathing hypersonic vehicle. ISA Trans. 2019, 88, 233–245. [Google Scholar] [CrossRef]
- Smith, J.; Su, J.; Liu, C.; Chen, W.H. Disturbance observer based control with anti-windup applied to a small fixed wing UAV for disturbance rejection. J. Intell. Robot. Syst. 2017, 88, 329–346. [Google Scholar] [CrossRef]
- MIL-STD-1797A; Department of Defense Handbook: Flying Qualities of Piloted Aircraft. University Reprints 2017; Department of Defense: Washington, DC, USA, 1995.
- Rodriguez-Mata, A.E.; Gonzalez-Hernandez, I.; Rangel-Peraza, J.G.; Salazar, S.; Leal, R.L. Wind-gust compensation algorithm based on high-gain residual observer to control a quadrotor aircraft: Real-time verification task at fixed point. Int. J. Control. Autom. Syst. 2018, 16, 856–866. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, F.; Guo, Y.; Hua, C. Multivariable sliding mode backstepping controller design for quadrotor UAV based on disturbance observer. Sci. China Inf. Sci. 2018, 61, 112207. [Google Scholar] [CrossRef]
- Aboudonia, A.; Rashad, R.; El-Badawy, A. Time domain disturbance observer based control of a quadrotor unmanned aerial vehicle. In Proceedings of the 2015 XXV International Conference on Information, Communication and Automation Technologies (ICAT), Sarajevo, Bosnia and Herzegovina, 29–31 October 2015; pp. 1–6. [Google Scholar]
- Aboudonia, A.; El-Badawy, A.; Rashad, R. Disturbance observer-based feedback linearization control of an unmanned quadrotor helicopter. Proc. Inst. Mech. Eng. Part J. Syst. Control. Eng. 2016, 230, 877–891. [Google Scholar] [CrossRef]
- Aboudonia, A.; Rashad, R.; El-Badawy, A. Composite hierarchical anti-disturbance control of a quadrotor UAV in the presence of matched and mismatched disturbances. J. Intell. Robot. Syst. 2018, 90, 201–216. [Google Scholar] [CrossRef]
- Han, J. From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 2009, 56, 900–906. [Google Scholar] [CrossRef]
- Wang, H.; Li, N.; Wang, Y.; Su, B. Backstepping sliding mode trajectory tracking via extended state observer for quadrotors with wind disturbance. Int. J. Control. Autom. Syst. 2021, 19, 3273–3284. [Google Scholar] [CrossRef]
- Shao, X.; Liu, J.; Cao, H.; Shen, C.; Wang, H. Robust dynamic surface trajectory tracking control for a quadrotor UAV via extended state observer. Int. J. Robust Nonlinear Control. 2018, 28, 2700–2719. [Google Scholar] [CrossRef]
- Zhiyuan, C.; Yanyang, L.; Yanhua, S.; Hongyu, C.; Bin, W.; Mingqi, H.; Rao, Y. Fuzzy sliding mode control for rotorcraft aerial manipulator with extended state observer. In Proceedings of the 2020 IEEE: Chinese Automation Congress (CAC), Shanghai, China, 6–8 November 2020; pp. 1710–1714. [Google Scholar]
- Khalil, H.K. Extended high-gain observers as disturbance estimators. Sice J. Control. Meas. Syst. Integr. 2017, 10, 125–134. [Google Scholar] [CrossRef]
- Liu, J.; Sun, M.; Chen, Z.; Sun, Q. Super-twisting sliding mode control for aircraft at high angle of attack based on finite-time extended state observer. Nonlinear Dyn. 2020, 99, 2785–2799. [Google Scholar] [CrossRef]
- Polyakov, A. Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control. 2011, 57, 2106–2110. [Google Scholar] [CrossRef]
- Biao, T.; Xingling, S.; Wei, Y.; Wendong, Z. Fixed time output feedback containment for uncertain nonlinear multiagent systems with switching communication topologies. ISA Trans. 2021, 111, 82–95. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Zhang, S.; Zou, A.M. Velocity-free fixed-time attitude cooperative control for spacecraft formations under directed graphs. Int. J. Robust Nonlinear Control. 2021, 31, 2905–2927. [Google Scholar] [CrossRef]
- Cui, L.; Jin, N.; Chang, S.; Zuo, Z.; Zhao, Z. Fixed-time ESO based fixed-time integral terminal sliding mode controller design for a missile. ISA Trans. 2021, 125, 237–251. [Google Scholar] [CrossRef]
- Jin, R.; Rocco, P.; Geng, Y. Observer-based fixed-time tracking control for space robots in task space. Acta Astronaut. 2021, 184, 35–45. [Google Scholar] [CrossRef]
- Mechali, O.; Xu, L.; Huang, Y.; Shi, M.; Xie, X. Observer-based fixed-time continuous nonsingular terminal sliding mode control of quadrotor aircraft under uncertainties and disturbances for robust trajectory tracking: Theory and experiment. Control. Eng. Pract. 2021, 111, 104806. [Google Scholar] [CrossRef]
- Li, B.; Ban, H.; Gong, W.; Xiao, B. Extended state observer-based finite-time dynamic surface control for trajectory tracking of a quadrotor unmanned aerial vehicle. Trans. Inst. Meas. Control 2020, 42, 2956–2968. [Google Scholar] [CrossRef]
- Liu, J.; Sun, M.; Chen, Z.; Sun, Q. Output feedback control for aircraft at high angle of attack based upon fixed-time extended state observer. Aerosp. Sci. Technol. 2019, 95, 105468. [Google Scholar] [CrossRef]
- Khalil, H.K. Nonlinear Systems, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2002; Volume 115. [Google Scholar]
- Fridman, L.; Barbot, J.P.; Plestan, F. Recent trends in sliding mode control. In IET Control, Robotics 552 and Sensors Series Volume 102; The Institution of Engineering and Technology: London, UK, 2016. [Google Scholar]
- Zhu, Z.; Xia, Y.; Fu, M. Attitude stabilization of rigid spacecraft with finite-time convergence. Int. J. Robust Nonlinear Control. 2011, 21, 686–702. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, S.; Yan, Y. Fixed-time output feedback trajectory tracking control of marine surface vessels subject to unknown external disturbances and uncertainties. ISA Trans. 2019, 93, 145–155. [Google Scholar] [CrossRef]
- Polyakov, A.; Fridman, L. Stability notions and Lyapunov functions for sliding mode control systems. J. Frankl. Inst. 2014, 351, 1831–1865. [Google Scholar] [CrossRef]
- Perruquetti, W.; Floquet, T.; Moulay, E. Finite-time observers: Application to secure communication. IEEE Trans. Autom. Control. 2008, 53, 356–360. [Google Scholar] [CrossRef]
- Bhat, S.P.; Bernstein, D.S. Geometric homogeneity with applications to finite-time stability. Math. Control. Signals Syst. 2005, 17, 101–127. [Google Scholar] [CrossRef]
- Wang, H.; Chen, B.; Lin, C.; Sun, Y.; Wang, F. Adaptive finite-time control for a class of uncertain high-order non-linear systems based on fuzzy approximation. IET Control. Theory Appl. 2017, 11, 677–684. [Google Scholar] [CrossRef]
- Castañeda, H.; Gordillo, J.L. Spatial Modeling and Robust Flight Control Based on Adaptive Sliding Mode Approach for a Quadrotor MAV. J. Intell. Robot. Syst. 2019, 93, 101–111. [Google Scholar] [CrossRef]
- Gage, S. Creating a unified graphical wind turbulence model from multiple specifications. In Proceedings of the AIAA Modeling and Simulation Technologies Conference and Exhibit, Austin, TX, USA, 1–14 August 2003; p. 5529. [Google Scholar]
- Zhang, J.; Yu, S.; Yan, Y.; Wu, D. Fixed-time output feedback sliding mode tracking control of marine surface vessels under actuator faults with disturbance cancellation. Appl. Ocean. Res. 2020, 104, 102378. [Google Scholar] [CrossRef]
- Castañeda, H.; Rodriguez, J.; Gordillo, J.L. Continuous and smooth differentiator based on adaptive sliding mode control for a quad-rotor MAV. Asian J. Control. 2019, 23, 661–672. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, C.; Wu, R.; Cui, N. Fixed-time extended state observer based non-singular fast terminal sliding mode control for a VTVL reusable launch vehicle. Aerosp. Sci. Technol. 2018, 82, 70–79. [Google Scholar] [CrossRef]
- Basin, M.; Yu, P.; Shtessel, Y. Finite-and fixed-time differentiators utilising HOSM techniques. IET Control. Theory Appl. 2017, 11, 1144–1152. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, S.; Yan, Y. Fixed-time extended state observer-based trajectory tracking and point stabilization control for marine surface vessels with uncertainties and disturbances. Ocean. Eng. 2019, 186, 106109. [Google Scholar] [CrossRef]
- Tian, B.; Zuo, Z.; Yan, X.; Wang, H. A fixed-time output feedback control scheme for double integrator systems. Automatica 2017, 80, 17–24. [Google Scholar] [CrossRef]
- Plestan, F.; Shtessel, Y.; Bregeault, V.; Poznyak, A. New methodologies for adaptive sliding mode control. Int. J. Control. 2010, 83, 1907–1919. [Google Scholar] [CrossRef]
- Khalil, H.K. High-Gain Observers in Nonlinear Feedback Control; SIAM: Philadelphia, PA, USA, 2017. [Google Scholar]
- Castañeda, H.; Salas-Peña, O.S.; de León-Morales, J. Extended observer based on adaptive second order sliding mode control for a fixed wing UAV. ISA Trans. 2017, 66, 226–232. [Google Scholar] [CrossRef] [PubMed]
Disturbance Estimation | |||||
---|---|---|---|---|---|
MSE | RMSE | IAE | ISE | ITAE | |
x-axis | |||||
FxtESO-ASMC | 0.0469 | 0.2166 | 9.9390 | 2.8160 | 302.7 |
NESO-ASMC | 0.0586 | 0.2421 | 11.00 | 3.5190 | 305.2 |
y-axis | |||||
FxtESO-ASMC | 0.0875 | 0.2958 | 13.51 | 5.25 | 377.2 |
NESO-ASMC | 0.1059 | 0.3254 | 14.34 | 6.3550 | 364.6 |
z-axis | |||||
FxtESO-ASMC | 0.4698 | 0.6854 | 29.25 | 28.19 | 729.3 |
NESO-ASMC | 1.0988 | 1.0482 | 33.37 | 65.94 | 699.5 |
Position Estimation | |||||
MSE | RMSE | IAE | ISE | ITAE | |
x-axis | |||||
FxtESO-ASMC | 1.41 × 10 | 1.19 × 10 | 0.0569 | 8.50 × 10 | 1.7110 |
NESO-ASMC | 1.38 × 10 | 1.17 × 10 | 0.0562 | 8.30 × 10 | 1.6484 |
y-axis | |||||
FxtESO-ASMC | 1.43 × 10 | 1.19 × 10 | 0.0572 | 8.62 × 10 | 1.7180 |
NESO-ASMC | 1.40 × 10 | 1.18 × 10 | 0.0565 | 8.43 × 10 | 1.69 |
z-axis | |||||
FxtESO-ASMC | 5.43 × 10 | 2.33 × 10 | 0.0655 | 3.26 × 10 | 1.799 |
NESO-ASMC | 6.95 × 10 | 2.63 × 10 | 0.0697 | 4.17 × 10 | 1.768 |
MSE | RMSE | IAE | ISE | ITAE | |
x-axis | |||||
FxtESO-ASMC | 0.0075 | 0.0866 | 4.1990 | 0.4472 | 104.3 |
NESO-ASMC | 0.0566 | 0.2379 | 6.0870 | 3.3990 | 114.7 |
FxtESO-ASMC w/o DC | 0.0413 | 0.2032 | 9.186 | 2.481 | 234.9 |
y-axis | |||||
FxtESO-ASMC | 0.0111 | 0.1054 | 3.5910 | 0.6640 | 77.02 |
NESO-ASMC | 0.2925 | 0.5408 | 11.65 | 17.55 | 117.30 |
FxtESO-ASMC w/o DC | 0.0536 | 0.2315 | 8.7970 | 3.214 | 153.8 |
z-axis | |||||
FxtESO-ASMC | 0.0465 | 0.2156 | 3.1020 | 2.7910 | 34.13 |
NESO-ASMC | 0.1499 | 0.3872 | 6.0870 | 8.9940 | 39.97 |
FxtESO-ASMC w/o DC | 0.0917 | 0.3028 | 8.0420 | 5.50 | 77.95 |
Quadrotor UAV. Norms of Control | |||||
FxtESO-ASMC | 1717.70 | 395.9815 | |||
NESO-ASMC | 1721.80 | 1041.7 | |||
FxtESO-ASMC w/o DC | 1716.80 | 785.2556 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miranda-Moya, A.; Castañeda, H.; Wang, H. Fixed-Time Extended Observer-Based Adaptive Sliding Mode Control for a Quadrotor UAV under Severe Turbulent Wind. Drones 2023, 7, 700. https://doi.org/10.3390/drones7120700
Miranda-Moya A, Castañeda H, Wang H. Fixed-Time Extended Observer-Based Adaptive Sliding Mode Control for a Quadrotor UAV under Severe Turbulent Wind. Drones. 2023; 7(12):700. https://doi.org/10.3390/drones7120700
Chicago/Turabian StyleMiranda-Moya, Armando, Herman Castañeda, and Hesheng Wang. 2023. "Fixed-Time Extended Observer-Based Adaptive Sliding Mode Control for a Quadrotor UAV under Severe Turbulent Wind" Drones 7, no. 12: 700. https://doi.org/10.3390/drones7120700
APA StyleMiranda-Moya, A., Castañeda, H., & Wang, H. (2023). Fixed-Time Extended Observer-Based Adaptive Sliding Mode Control for a Quadrotor UAV under Severe Turbulent Wind. Drones, 7(12), 700. https://doi.org/10.3390/drones7120700