The Application of RGB, Multispectral, and Thermal Imagery to Document and Monitor Archaeological Sites in the Arctic: A Case Study from South Greenland
Abstract
:1. Introduction
2. Study Sites and Environmental Conditions
2.1. Qassiarsuk (Brattahlíð)
2.2. Qaqortukulooq (Hvalsey Church)
3. Materials and Methods
3.1. UAV and Payloads
3.2. Data Processing
4. Results and Discussion
4.1. Mapping Ruins and Structures
4.2. Mapping the Impacts from Human Activity
4.3. Soil Water Content
5. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hollesen, J.; Matthiesen, H.; Møller, A.B.; Westergaard-Nielsen, A.; Elberling, B. Climate change and the loss of organic archaeological deposits in the Arctic. Sci. Rep. 2016, 6, 28690. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.J.; Merriwether, D.A.; Kasparov, A.K.; Khartanovich, V.I.; Nikolskiy, P.A.; Shidlovskiy, F.K.; Gromov, A.V.; Chikisheva, T.A.; Chasnyk, V.G.; Timoshin, V.B.; et al. A genetic perspective of prehistoric hunter-gatherers in the Siberian Arctic: Mitochondrial DNA analysis of human remains from 8000years ago. J. Archaeol. Sci. Rep. 2018, 17, 943–949. [Google Scholar] [CrossRef]
- Rasmussen, M.; Li, Y.R.; Lindgreen, S.; Pedersen, J.S.; Albrechtsen, A.; Moltke, I.; Metspalu, M.; Metspalu, E.; Kivisild, T.; Gupta, R.; et al. Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature 2010, 463, 757–762. [Google Scholar] [CrossRef] [PubMed]
- Pitulko, V.; Nikolskiy, P. Extinction of woolly mammoth in Northeastern Asia and the archaeological record. World Archaeol. 2012, 44, 21–42. [Google Scholar] [CrossRef]
- Causey, D.; Corbett, D.G.; LefÈVre, C.; West, D.L.; Savinetsky, A.B.; Kiseleva, N.K.; Khassanov, B.F. The palaeoenvironment of humans and marine birds of the Aleutian Islands: Three millennia of change. Fish. Oceanogr. 2005, 14, 259–276. [Google Scholar] [CrossRef]
- Hollesen, J.; Callanan, M.; Dawson, T.; Fenger-Nielsen, R.; Friesen, T.M.; Jensen, A.M.; Markham, A.; Martens, V.V.; Pitulko, V.V.; Rockman, M. Climate change and the deteriorating archaeological and environmental archives of the Arctic. Antiquity 2018, 92, 573–586. [Google Scholar] [CrossRef]
- Lantuit, H.; Overduin, P.P.; Couture, N.; Wetterich, S.; Aré, F.; Atkinson, D.; Brown, J.; Cherkashov, G.; Drozdov, D.; Forbes, D.L.; et al. The Arctic Coastal Dynamics Database: A New Classification Scheme and Statistics on Arctic Permafrost Coastlines. Estuaries Coasts 2012, 35, 383–400. [Google Scholar] [CrossRef]
- Hollesen, J.; Matthiesen, H.; Fenger-Nielsen, R.; Abermann, J.; Westergaard-Nielsen, A.; Elberling, B. Predicting the loss of organic archaeological deposits at a regional scale in Greenland. Sci. Rep. 2019, 9, 9097. [Google Scholar] [CrossRef] [PubMed]
- Myers-Smith, I.H.; Elmendorf, S.C.; Beck, P.S.A.; Wilmking, M.; Hallinger, M.; Blok, D.; Tape, K.D.; Rayback, S.A.; Macias-Fauria, M.; Forbes, B.C.; et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Change 2015, 5, 887–891. [Google Scholar] [CrossRef]
- Epstein, H.E.; Myers-Smith, I.; Walker, D.A. Recent dynamics of arctic and sub-arctic vegetation. Environ. Res. Lett. 2013, 8, 015040. [Google Scholar] [CrossRef] [Green Version]
- Fenger-Nielsen, R.; Hollesen, J.; Matthiesen, H.; Andersen, E.A.S.; Westergaard-Nielsen, A.; Harmsen, H.; Michelsen, A.; Elberling, B. Footprints from the past: The influence of past human activities on vegetation and soil across five archaeological sites in Greenland. Sci. Total Environ. 2019, 654, 895–905. [Google Scholar] [CrossRef] [PubMed]
- Matthiesen, H.; Fenger-Nielsen, R.; Harmsen, H.; Madsen, C.K.; Hollesen, J. The Impact of Vegetation on Archaeological Sites in the Low Arctic in Light of Climate Change. Arctic 2020, 73, 141–152. [Google Scholar] [CrossRef]
- Thuestad, A.E.; Tømmervik, H.; Solbø, S.A. Assessing the impact of human activity on cultural heritage in Svalbard: A remote sensing study of London. Polar J. 2015, 5, 428–445. [Google Scholar] [CrossRef]
- Fenger-Nielsen, R.; Elberling, B.; Kroon, A.; Westergaard-Nielsen, A.; Matthiesen, H.; Harmsen, H.; Madsen, C.K.; Stendel, M.; Hollesen, J. Arctic archaeological sites threatened by climate change: A regional multi-threat assessment of sites in south-west Greenland. Archaeometry 2020, 62, 1280–1297. [Google Scholar] [CrossRef]
- Kucukkaya, A.G. Photogrammetry and remote sensing in archeology. J. Quant. Spectrosc. Radiat. Transf. 2004, 88, 83–88. [Google Scholar] [CrossRef]
- Campana, S. Drones in Archaeology. State-of-the-art and Future Perspectives. Archaeol. Prospect. 2017, 24, 275–296. [Google Scholar] [CrossRef]
- Verhoeven, G.J.; Smet, P.F.; Poelman, D.; Vermeulen, F. Spectral Characterization of a Digital Still Camera’s NIR Modification to Enhance Archaeological Observation. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3456–3468. [Google Scholar] [CrossRef]
- Agudo, P.U.; Pajas, J.A.; Pérez-Cabello, F.; Redón, J.V.; Lebrón, B.E. The Potential of Drones and Sensors to Enhance Detection of Archaeological Cropmarks: A Comparative Study Between Multi-Spectral and Thermal Imagery. Drones 2018, 2, 29. [Google Scholar]
- Candiago, S.; Remondino, F.; De Giglio, M.; Dubbini, M.; Gattelli, M. Evaluating Multispectral Images and Vegetation Indices for Precision Farming Applications from UAV Images. Remote Sens. 2015, 7, 4026–4047. [Google Scholar]
- Fawcett, D.; Panigada, C.; Tagliabue, G.; Boschetti, M.; Celesti, M.; Evdokimov, A.; Biriukova, K.; Colombo, R.; Miglietta, F.; Rascher, U.; et al. Multi-Scale Evaluation of Drone-Based Multispectral Surface Reflectance and Vegetation Indices in Operational Conditions. Remote Sens. 2020, 12, 514. [Google Scholar] [CrossRef]
- Sonaa, G.; Passoni, D.; Pinto, L.; Pagliari, D.; Masseroni, D.; Ortuani, B.; Facchi, A. Uav Multispectral Survey to Map Soil and Crop for Precision Farming Applications. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41B1, 1023–1029. [Google Scholar] [CrossRef]
- Salgado Carmona, J.Á.; Quirós, E.; Mayoral, V.; Charro, C. Assessing the potential of multispectral and thermal UAV imagery from archaeological sites. A case study from the Iron Age hillfort of Villasviejas del Tamuja (Cáceres, Spain). J. Archaeol. Sci. Rep. 2020, 31, 102312. [Google Scholar] [CrossRef]
- Casana, J.; Wiewel, A.; Cool, A.; Hill, A.C.; Fisher, K.D.; Laugier, E.J. Archaeological Aerial Thermography in Theory and Practice. Adv. Archaeol. Pract. 2017, 5, 310–327. [Google Scholar] [CrossRef]
- Hill, A.C.; Laugier, E.J.; Casana, J. Archaeological Remote Sensing Using Multi-Temporal, Drone-Acquired Thermal and Near Infrared (NIR) Imagery: A Case Study at the Enfield Shaker Village, New Hampshire. Remote Sens. 2020, 12, 690. [Google Scholar]
- James, K.; Nichol, C.J.; Wade, T.; Cowley, D.; Gibson Poole, S.; Gray, A.; Gillespie, J. Thermal and Multispectral Remote Sensing for the Detection and Analysis of Archaeologically Induced Crop Stress at a UK Site. Drones 2020, 4, 61. [Google Scholar] [CrossRef]
- Pearson, K. LIII. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1901, 2, 559–572. [Google Scholar] [CrossRef]
- Shendryk, Y.; Sofonia, J.; Garrard, R.; Rist, Y.; Skocaj, D.; Thorburn, P. Fine-scale prediction of biomass and leaf nitrogen content in sugarcane using UAV LiDAR and multispectral imaging. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102177. [Google Scholar] [CrossRef]
- Vésteinsson, O. Kujataa—A Subarctic Farming Landscape in Greenland. A Nomination to UNESCO’s World Heritage List. 2016, p. 265. Available online: https://whc.unesco.org/en/list/1536/documents/ (accessed on 3 February 2023).
- Jensen, C.D. Weather Observations from Greenland 1958–2021—Observational Data with Description; Danish Meteorologial Institute: Copenhagen, Denmark, 2022. [Google Scholar]
- Paulsen, C.; Church, M.; Simpson, I.; Adderly, P.; Pálsdóttir, A.; McGovern, T.H. Archaeological Excavations at Qassiarsuk 2005–2006 (Field Report); Rafnsson, M., Ed.; Náttúrustofa Vestfjarða, NABO, Grønlands Nationalmuseum & Arkiv: Nuuk, Denmark, 2007. [Google Scholar]
- Arneborg, J. SAGA Trails: Brattahlið, Garðar, Hvalsey Fjord’s Church and Herjolfsnes: Four chieftains’ Farmsteads in the Norse Settlements of Greenland; Nanortalik Museum: Nanortalik, Denmark; Narsaq Museum: Narsaq Denmark; Qaqortoq Museum: Qaqortoq, Denmark, 2006. [Google Scholar]
- QGIS Team. Geographic Information System. Open Source Geospatial Foundation Project. 2023. Available online: http://qgis.osgeo.org (accessed on 3 February 2023).
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef]
- Kokalj, Ž.; Somrak, M. Why Not a Single Image? Combining Visualizations to Facilitate Fieldwork and On-Screen Mapping. Remote Sens. 2019, 11, 747. [Google Scholar] [CrossRef]
- Orengo, H.A.; Petrie, C.A. Multi-scale relief model (MSRM): A new algorithm for the visualization of subtle topographic change of variable size in digital elevation models. Earth Surf. Process. Landf. 2018, 43, 1361–1369. [Google Scholar] [CrossRef]
- Lillesand, T.M.; Kiefer, R.W.; Chipman, J.W. Remote Sensing and Image Interpretation, 7th ed.; Wiley: New York, NY, USA, 2015. [Google Scholar]
- Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- Stisen, S.; Sandholt, I.; Nørgaard, A.; Fensholt, R.; Eklundh, L. Estimation of diurnal air temperature using MSG SEVIRI data in West Africa. Remote Sens. Environ. 2007, 110, 262–274. [Google Scholar] [CrossRef]
- Schmugge, T. Remote Sensing of Surface Soil Moisture. J. Appl. Meteorol. Climatol. 1978, 17, 1549–1557. [Google Scholar] [CrossRef]
- Stisen, S.; Sandholt, I.; Nørgaard, A.; Fensholt, R.; Jensen, K.H. Combining the triangle method with thermal inertia to estimate regional evapotranspiration—Applied to MSG-SEVIRI data in the Senegal River basin. Remote Sens. Environ. 2008, 112, 1242–1255. [Google Scholar] [CrossRef]
- Carlson, T.N.; Gillies, R.R.; Schmugge, T.J. An interpretation of methodologies for indirect measurement of soil water content. Agric. For. Meteorol. 1995, 77, 191–205. [Google Scholar] [CrossRef]
- Nieto, H.; Guzinski, R.; Sandholdt, I. pyTVDI. 2016. Available online: https://github.com/hectornieto/pyTVDI (accessed on 3 February 2023).
- Shijin, W.; Yaqiong, M.; Xueyan, Z.; Jia, X. Polar tourism and environment change: Opportunity, impact and adaptation. Polar Sci. 2020, 25, 100544. [Google Scholar] [CrossRef]
- Markham, A.; Osipova, E.; Lafrenz Samuels, K.; Caldas, A. World Heritage and Tourism in a Changing Climate; IUCN: Paris, France, 2016. [Google Scholar]
- Ancin-Murguzur, F.J.; Munoz, L.; Monz, C.; Hausner, V.H. Drones as a tool to monitor human impacts and vegetation changes in parks and protected areas. Remote Sens. Ecol. Conserv. 2020, 6, 105–113. [Google Scholar] [CrossRef]
- Hollesen, J.; Matthiesen, H. The Influence of Soil Moisture, Temperature and Oxygen on the Oxic Decay of Organic Archaeological Deposits. Archaeometry 2015, 57, 362–377. [Google Scholar] [CrossRef]
- Matthiesen, H.; Hollesen, J.; Dunlop, R.; Seither, A.; de Beer, J. In situ Measurements of Oxygen Dynamics in Unsaturated Archaeological Deposits. Archaeometry 2015, 57, 1078–1094. [Google Scholar] [CrossRef]
- Chen, J.; Wang, C.; Jiang, H.; Mao, L.; Yu, Z. Estimating soil moisture using Temperature–Vegetation Dryness Index (TVDI) in the Huang-huai-hai (HHH) plain. Int. J. Remote Sens. 2011, 32, 1165–1177. [Google Scholar] [CrossRef]
- Zhao, H.; Li, Y.; Chen, X.; Wang, H.; Yao, N.; Liu, F. Monitoring monthly soil moisture conditions in China with temperature vegetation dryness indexes based on an enhanced vegetation index and normalized difference vegetation index. Theor. Appl. Climatol. 2021, 143, 159–176. [Google Scholar] [CrossRef]
Location | Date | Time | Camera | Derived Maps | Study Relevance | Alt. (m) | Pixel Size (cm) (Thermal) | Weather |
---|---|---|---|---|---|---|---|---|
Qassiarsuk | 28 July 2021 | 15.00 | Zenmouse H20 | RGB, DSM | Mapping structures, Mapping human impact, High precision GCP reference | 75 | 2.6 | Cloudy |
Qassiarsuk | 29 July 2021 | 08.30 | MicaSense Altum | Thermal, NDVI, PCA | Mapping structures, Mapping human impact, Mapping SSM | 60 | 2.6 (40.0) | Sunny/clouds |
Qassiarsuk | 29 July 2021 | 12.30 | MicaSense Altum | Thermal, NDVI | Mapping SSM | 60 | 2.6 (40.0) | Sunny/clouds |
Qaqortukulooq | 4 August 2021 | 17.30 | Zenmouse H20 | RGB | Mapping human impact, High precision GCP reference | 75 | 2.6 | Cloudy |
Qaqortukulooq | 6 August 2021 | 10.30 | MicaSense Altum | Thermal | Mapping SSM | 60 | 2.6 (40.0) | Sunny, clear sky |
Qaqortukulooq | 6 August 2021 | 13.30 | MicaSense Altum | Thermal, NDVI | Mapping human impact, Mapping SSM | 60 | 2.6 (40.0) | Sunny, clear sky |
Qaqortukulooq | 8 August 2022 | 13.00 | MicaSense Altum | Thermal, NDVI, PCA | Mapping structures, Mapping human impact | 60 | 2.6 (40.0) | Sunny/clouds |
Qaqortukulooq | 8 August 2022 | 16.00 | Zenmouse H20 | RGB, DSM | Mapping structures, Mapping human impact, High precision GCP reference | 75 | 2.6 | Sunny, clear sky |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hollesen, J.; Jepsen, M.S.; Harmsen, H. The Application of RGB, Multispectral, and Thermal Imagery to Document and Monitor Archaeological Sites in the Arctic: A Case Study from South Greenland. Drones 2023, 7, 115. https://doi.org/10.3390/drones7020115
Hollesen J, Jepsen MS, Harmsen H. The Application of RGB, Multispectral, and Thermal Imagery to Document and Monitor Archaeological Sites in the Arctic: A Case Study from South Greenland. Drones. 2023; 7(2):115. https://doi.org/10.3390/drones7020115
Chicago/Turabian StyleHollesen, Jørgen, Malte Skov Jepsen, and Hans Harmsen. 2023. "The Application of RGB, Multispectral, and Thermal Imagery to Document and Monitor Archaeological Sites in the Arctic: A Case Study from South Greenland" Drones 7, no. 2: 115. https://doi.org/10.3390/drones7020115
APA StyleHollesen, J., Jepsen, M. S., & Harmsen, H. (2023). The Application of RGB, Multispectral, and Thermal Imagery to Document and Monitor Archaeological Sites in the Arctic: A Case Study from South Greenland. Drones, 7(2), 115. https://doi.org/10.3390/drones7020115