Pollution from Highways Detection Using Winter UAV Data
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Metal Content in Water
3.2. Metal Content in Dust
- The most abundant metals were Al, Ca, Fe, K, Mg, Na, and Pr. The increased levels of metals in dust at the nearest sampling stations were a distinguishing feature. Using remote sensing to detect metals in fresh snow was unlikely to be successful unless in a heavily contaminated region. Based on the relationships, several metals, such as Al, Ca, Ce, Co, Cr, Cu, Dy, Er, Fe, K, La, Li, Mg, Mn, Nd, Ni, P, Pr, Sc, Sm, Y, and Zn, highlighted the importance of dust in monitoring roadside pollution.
- There was a significant relationship between metal content (Al, Ca, Ce, Cr, Cu, Dy, Er, Fe, K, La, Li, Mg, Mn, Nd, Ni, P, Pr, Sc, Sm, Y, and Zn) and the UAV parameters (blue av, gray, green, intensity, and red). Meanwhile, a weak correlation was observed with the hue parameter. The high positive association was an indicator of metal diffusion in dust. On the other hand, Al, Ca, Ce, Cr, Cu, Dy, Er, Fe, K, La, Li, Mg, Mn, Nd, Ni, P, Pr, Sc, Sm, Y, and Zn metals in dust exhibited a negative association with the magenta, cyan, saturation, and yellow parameters. Table 4 depicts the correlation coefficients for the metal content of dust with the UAV parameters.
3.3. Metal Content in Snow (Water and Dust)
4. Discussion
4.1. The Influence of Roadways on Metal Dissemination
4.2. A Remote Sensing Approach for Monitoring Metal Pollution
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Heavy Metal | Distance from the Road (m) and Point Code | ||||||||||||||||||
190 | 170 | 150 | 130 | 110 | 90 | 70 | 50 | 30 | 0 | 30 | 50 | 70 | 90 | 110 | 130 | 150 | 170 | 190 | |
9W | 8W | 7W | 6W | 5W | 4W | 3W | 2W | 1W | 1E | 2E | 3E | 4E | 5E | 6E | 7E | 8E | 9E | ||
Al | 5.9 | 6.2 | 5.9 | 6.6 | 6.2 | 5.8 | 99.2 | 5.3 | 136 | 490.3 | 414.9 | 89.9 | 82.6 | 31.4 | 164 | 83.6 | 116.5 | 47.4 | |
B | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.758 | 6.842 | 5.262 | 6.8 | 3.922 | 5.186 | 5.138 | 5.16 | 4.49 | 4.686 | 4.52 | 5.296 | 4.738 | |
Ba | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.758 | 6.842 | 5.262 | 6.8 | 34.9058 | 91.2736 | 5.138 | 5.16 | 4.49 | 4.686 | 4.52 | 5.296 | 4.738 | |
Ca | 1482 | 1267.53 | 1732.09 | 1100.23 | 1337.39 | 1203.42 | 1724.18 | 1360.23 | 2196.4 | 2686.57 | 8245.74 | 1685.26 | 1609.92 | 1012.5 | 1363.63 | 935.64 | 884.432 | 803.091 | |
Cd | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.758 | 6.842 | 5.262 | 6.8 | 3.922 | 5.186 | 5.138 | 5.16 | 4.49 | 4.686 | 4.52 | 5.296 | 4738 | |
Ce | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.758 | 6.842 | 5.262 | 6.8 | 3.922 | 5.186 | 5.138 | 5.16 | 4.49 | 4.686 | 4.52 | 5.296 | 4.738 | |
Co | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.758 | 6.842 | 5.262 | 6.8 | 3.922 | 5.186 | 5.138 | 5.16 | 4.49 | 4.686 | 4.52 | 5.296 | 4.738 | |
Cr | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.758 | 6.842 | 5.262 | 6.8 | 3.922 | 5.186 | 5.138 | 5.16 | 4.49 | 4.686 | 4.52 | 5.296 | 4.738 | |
Cu | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.758 | 6.842 | 5.262 | 6.8 | 3.922 | 5.186 | 5.138 | 5.16 | 4.49 | 4.686 | 4.52 | 5.296 | 4.738 | |
Dy | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.758 | 6.842 | 5.262 | 6.8 | 3.922 | 5.186 | 5.138 | 5.16 | 4.49 | 4.686 | 4.52 | 5.296 | 4.738 | |
Er | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.758 | 6.842 | 5.262 | 6.8 | 3.922 | 5.186 | 5.138 | 5.16 | 4.49 | 4.686 | 4.52 | 5.296 | 4.738 | |
Eu | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.758 | 6.842 | 5.262 | 6.8 | 3.922 | 5.186 | 5.138 | 5.16 | 4.49 | 4.686 | 4.52 | 5.296 | 4.738 | |
Fe | 59.28 | 62.44 | 59.42 | 66.08 | 62.06 | 57.58 | 68.42 | 52.62 | 68 | 482.406 | 371.058 | 51.38 | 51.6 | 44.9 | 46.86 | 45.2 | 52.96 | 47.38 | |
Gd | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.758 | 6.842 | 5.262 | 6.8 | 3.922 | 5.186 | 5.138 | 5.16 | 4.49 | 4.686 | 4.52 | 5.296 | 4738 | |
Ho | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.758 | 6.842 | 5.262 | 6.8 | 3.922 | 5.186 | 5.138 | 5.16 | 4.49 | 4.686 | 4.52 | 5.296 | 4.738 | |
K | 334.932 | 508.886 | 843.764 | 379.96 | 887.458 | 702.476 | 478.94 | 939.267 | 503.2 | 2142.01 | 710.482 | 1073.84 | 665.64 | 374.915 | 414.711 | 316.4 | 278.04 | 246.376 | |
La | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.758 | 6.842 | 5.262 | 6.8 | 3.922 | 5.186 | 5.138 | 5.16 | 4.49 | 4.686 | 4.52 | 5.296 | 4.738 | |
Li | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.758 | 6.842 | 5.262 | 6.8 | 3.922 | 5.186 | 5.138 | 5.16 | 4.49 | 4.686 | 4.52 | 5.296 | 4.738 | |
Lu | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.758 | 6.842 | 5.262 | 6.8 | 3.922 | 5.186 | 5.138 | 5.16 | 4.49 | 4.686 | 4.52 | 5.296 | 4.738 | |
Mg | 305.292 | 290.346 | 317.897 | 257.712 | 269.961 | 299.416 | 335.258 | 373.602 | 499.8 | 372.59 | 570.46 | 418.747 | 322.5 | 237.97 | 304.59 | 196.62 | 204.796 | 161.092 | |
Mn | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.758 | 6.842 | 5.262 | 6.8 | 3.922 | 5.186 | 5.138 | 5.16 | 4.49 | 4.686 | 4.52 | 5.296 | 4.738 | |
Na | 207.48 | 437.08 | 1782.6 | 726.88 | 837.81 | 1727.4 | 957.88 | 1841.7 | 3060 | 3333.7 | 2333.7 | 1798.3 | 1806 | 763.3 | 937.2 | 723.2 | 926.8 | 615.94 | |
Nd | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.758 | 6.842 | 5.262 | 6.8 | 3.922 | 5.186 | 5.138 | 5.16 | 4.49 | 4.686 | 4.52 | 5.296 | 4.738 | |
Ni | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.758 | 6.842 | 5.262 | 6.8 | 3.922 | 5.186 | 5.138 | 5.16 | 4.49 | 4.686 | 4.52 | 5.296 | 4.738 | |
P | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.758 | 6.842 | 5.262 | 6.8 | 39.22 | 51.86 | 51.38 | 51.6 | 44.9 | 46.86 | 45.2 | 52.96 | 47.38 | |
Pb | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.758 | 6.842 | 5.262 | 6.8 | 39.22 | 51.86 | 51.38 | 51.6 | 44.9 | 46.86 | 45.2 | 52.96 | 47.38 | |
Pr | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.758 | 6.842 | 5.262 | 6.8 | 3.922 | 5.186 | 5.138 | 5.16 | 4.49 | 4.686 | 4.52 | 5.296 | 4.738 | |
Sc | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.758 | 6.842 | 5.262 | 6.8 | 3.922 | 5.186 | 5.138 | 5.16 | 4.49 | 4.686 | 4.52 | 5.296 | 4.738 | |
Sm | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.758 | 6.842 | 5.262 | 6.8 | 3.922 | 5.186 | 5.138 | 5.16 | 4.49 | 4.686 | 4.52 | 5.296 | 4.738 | |
Sr | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.758 | 6.842 | 5.262 | 6.8 | 3.922 | 5.186 | 5.138 | 5.16 | 4.49 | 4.686 | 4.52 | 5.296 | 4.738 | |
Tb | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.758 | 6.842 | 5.262 | 6.8 | 3.922 | 5.186 | 5.138 | 5.16 | 4.49 | 4.686 | 4.52 | 5.296 | 4.738 | |
Tm | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.758 | 6.842 | 5.262 | 6.8 | 3.922 | 5.186 | 5.138 | 5.16 | 4.49 | 4.686 | 4.52 | 5.296 | 4.738 | |
Y | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.758 | 6.842 | 5.262 | 6.8 | 3.922 | 5.186 | 5.138 | 5.16 | 4.49 | 4.686 | 4.52 | 5.296 | 4.738 | |
Yb | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.758 | 6.842 | 5.262 | 6.8 | 3.922 | 5.186 | 5.138 | 5.16 | 4.49 | 4.686 | 4.52 | 5.296 | 4.738 | |
Zn | 77.064 | 53.074 | 30.3042 | 62.776 | 93.09 | 5.758 | 239.47 | 36.834 | 6.8 | 56.869 | 33.709 | 5.138 | 30.96 | 29.185 | 25.3044 | 94.92 | 31.776 | 4.738 |
Heavy Metal | Distance from the Road (m) and Point Code | ||||||||||||||||||
190 | 170 | 150 | 130 | 110 | 90 | 70 | 50 | 30 | 0 | 30 | 50 | 70 | 90 | 110 | 130 | 150 | 170 | 190 | |
9W | 8W | 7W | 6W | 5W | 4W | 3W | 2W | 1W | 1E | 2E | 3E | 4E | 5E | 6E | 7E | 8E | 9E | ||
Al | 0.22 | 0.15 | 0.38 | 0.54 | 1.06 | 1.8 | 2.8 | 3.67 | 9.47 | 108.63 | 53.24 | 22.68 | 18.48 | 6.76 | 13.57 | 1.41 | 3.37 | 0.98 | |
B | 0 | 0 | 0 | 0 | 0 | 0.01 | 0.01 | 0.03 | 0.03 | 0.09 | 0.05 | 0.02 | 0.03 | 0.01 | 0.04 | 0 | 0 | 0 | |
Ba | 0.03 | 0.05 | 0.11 | 0.26 | 0.08 | 0.15 | 0.89 | 3.34 | 0.84 | 87.5 | 6.12 | 14.37 | 1.09 | 2.08 | 0.75 | 0.15 | 0.24 | 0.1 | |
Ca | 1 | 0.56 | 1 | 1 | 2.59 | 4.35 | 6.36 | 7.63 | 24.05 | 187.68 | 73.26 | 18.65 | 22.59 | 10.48 | 6.26 | 1.21 | 1.9 | 1.19 | |
Cd | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Ce | 0 | 0 | 0 | 0 | 0.01 | 0.01 | 0.02 | 0.02 | 0.03 | 0.4 | 0.22 | 0.1 | 0.07 | 0.02 | 0.04 | 0 | 0.01 | 0 | |
Co | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.01 | 0.01 | 0.09 | 0.05 | 0.02 | 0.02 | 0.01 | 0.01 | 0 | 0 | 0 | |
Cr | 0.01 | 0 | 0 | 0.01 | 0.01 | 0.02 | 0.03 | 0.04 | 0.06 | 0.25 | 0.15 | 0.1 | 0.06 | 0.03 | 0.03 | 0.01 | 0.01 | 0 | |
Cu | 0 | 0.01 | 0.01 | 0.01 | 0.02 | 0.02 | 0.03 | 0.08 | 0.1 | 0.66 | 0.25 | 0.22 | 0.11 | 0.06 | 0.04 | 0.01 | 0.01 | 0.01 | |
Dy | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.03 | 0.01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Er | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.03 | 0.01 | 0.01 | 0.01 | 0 | 0 | 0 | 0 | 0 | |
Eu | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Fe | 0.79 | 0.5 | 1.12 | 2.04 | 2.82 | 4.98 | 7.2 | 12.54 | 25.25 | 232.94 | 110.26 | 52.42 | 43.47 | 17.68 | 17.88 | 2.95 | 4.89 | 2.37 | |
Gd | 0 | 0 | 0 | 0 | 0 | 0 | 0.01 | 0.01 | 0.01 | 0.04 | 0.02 | 0.01 | 0.01 | 0 | 0 | 0 | 0 | 0 | |
Ho | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
K | 0.11 | 0.1 | 0.37 | 0.2 | 0.39 | 0.89 | 1.21 | 2.18 | 5.77 | 37.42 | 15.22 | 6.86 | 6.26 | 2.06 | 3.07 | 0.42 | 0.72 | 0.28 | |
La | 0 | 0 | 0 | 0 | 0 | 0 | 0.01 | 0.01 | 0.02 | 0.2 | 0.11 | 0.05 | 0.04 | 0.01 | 0.02 | 0 | 0.01 | 0 | |
Li | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.13 | 0.07 | 0.03 | 0.02 | 0.01 | 0.02 | 0 | 0 | 0 | |
Lu | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Mg | 0.18 | 0.15 | 0.25 | 0.31 | 0.2 | 1.2 | 1.81 | 2.4 | 5.1 | 68.8 | 30.59 | 10.79 | 10.23 | 4.17 | 3.55 | 0.57 | 1.03 | 0.48 | |
Mn | 0 | 0 | 0 | 0.01 | 0.01 | 0.05 | 0.11 | 0.08 | 0.22 | 2.78 | 1.54 | 0.53 | 0.4 | 0.16 | 0.35 | 0.03 | 0.09 | 0.02 | |
Na | 0.03 | 0.05 | 0.2 | 0.14 | 0.13 | 0.35 | 0.74 | 1.96 | 3.97 | 22.93 | 6.04 | 4.94 | 1.61 | 1.19 | 0.69 | 0.13 | 0.17 | 0.08 | |
Nd | 0 | 0 | 0 | 0 | 0 | 0.01 | 0.01 | 0.01 | 0.02 | 0.19 | 0.1 | 0.05 | 0.03 | 0.01 | 0.02 | 0 | 0.01 | 0 | |
Ni | 0 | 0 | 0 | 0.01 | 0.01 | 0.01 | 0.02 | 0.04 | 0.04 | 0.22 | 0.11 | 0.06 | 0.05 | 0.02 | 0.02 | 0 | 0.01 | 0 | |
P | 0.26 | 0.3 | 0.43 | 0.42 | 0.93 | 1.13 | 2.31 | 2.73 | 3.01 | 19.61 | 10.5 | 4.99 | 3.94 | 1.79 | 1.17 | 0.32 | 0.43 | 0.36 | |
Pb | 0.02 | 0 | 0 | 0 | 0.01 | 0.04 | 0.02 | 0.03 | 0.03 | 0.14 | 0.06 | 0.05 | 0.08 | 0.03 | 0.02 | 0 | 0 | 0 | |
Pr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.03 | 0.01 | 0.01 | 0.01 | 0 | 0 | 0 | 0 | 0 | |
Sc | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.03 | 0.01 | 0.01 | 0.01 | 0 | 0 | 0 | 0 | 0 | |
Sm | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.03 | 0.01 | 0.01 | 0.01 | 0 | 0 | 0 | 0 | 0 | |
Sr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.04 | 0.07 | 1.45 | 0.27 | 0.22 | 0.04 | 0.04 | 0.02 | 0 | 0.01 | 0 | |
Tb | 0 | 0 | 0 | 0 | 0 | 0.01 | 0.01 | 0.02 | 0 | 0.02 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Tm | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Y | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.01 | 0.1 | 0.06 | 0.02 | 0.02 | 0.01 | 0.01 | 0 | 0 | 0 | |
Yb | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Zn | 0.03 | 0.02 | 0.03 | 0.05 | 0.03 | 0.07 | 0.14 | 0.24 | 0.024 | 1.82 | 0.94 | 0.4 | 0.33 | 0.17 | 0.13 | 0.02 | 0.03 | 0.02 |
Heavy Metal | Distance from the Road (m) and Point Code | ||||||||||||||||||
190 | 170 | 150 | 130 | 110 | 90 | 70 | 50 | 30 | 0 | 30 | 50 | 70 | 90 | 110 | 130 | 150 | 170 | 190 | |
9W | 8W | 7W | 6W | 5W | 4W | 3W | 2W | 1W | 1E | 2E | 3E | 4E | 5E | 6E | 7E | 8E | 9E | ||
Al | 6.12 | 6.35 | 6.28 | 7.14 | 7.26 | 7.6 | 102 | 8.97 | 145.47 | 598.93 | 468.14 | 112.58 | 101.08 | 38.16 | 177.57 | 85.01 | 119.87 | 48.38 | |
B | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.768 | 6.852 | 5.292 | 6.83 | 4.012 | 5.236 | 5.158 | 5.19 | 4.5 | 4.726 | 4.52 | 5.296 | 4.738 | |
Ba | 5.958 | 6.294 | 6.052 | 6.868 | 6.286 | 5.908 | 7.732 | 8.602 | 7.64 | 122.406 | 97.3936 | 19.508 | 6.25 | 6.57 | 5.436 | 4.67 | 5.536 | 4.838 | |
Ca | 1483 | 1268.09 | 1733.09 | 1101.23 | 1339.98 | 1207.77 | 1730.54 | 1367.86 | 2220.45 | 2874.25 | 8319 | 1703.91 | 1632.51 | 1022.98 | 1369.89 | 936.85 | 886.332 | 804.281 | |
Cd | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.758 | 6.842 | 5.262 | 6.8 | 3.922 | 5.186 | 5.138 | 5.16 | 4.49 | 4.686 | 4.52 | 5.296 | 4738 | |
Ce | 5.928 | 6.244 | 5.942 | 6.608 | 6.216 | 5.768 | 6.862 | 5.282 | 6.83 | 4.322 | 5.406 | 5.238 | 5.23 | 4.51 | 4.726 | 4.52 | 5.306 | 4.738 | |
Co | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.758 | 6.842 | 5.272 | 6.81 | 4.012 | 5.236 | 5.158 | 5.18 | 4.5 | 4.696 | 4.52 | 5.296 | 4.738 | |
Cr | 5.938 | 6.244 | 5.942 | 6.618 | 6.216 | 5.778 | 6.872 | 5.302 | 6.86 | 4.172 | 5.336 | 5.238 | 5.22 | 4.52 | 4.716 | 4.53 | 5.306 | 4.738 | |
Cu | 5.928 | 6.254 | 5.952 | 6.618 | 6.226 | 5.778 | 6.872 | 5.342 | 6.9 | 4.582 | 5.436 | 5.358 | 5.27 | 4.55 | 4.726 | 4.53 | 5.306 | 4.748 | |
Dy | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.758 | 6.842 | 5.262 | 6.8 | 3.952 | 5.196 | 5.138 | 5.16 | 4.49 | 4.686 | 4.52 | 5.296 | 4.738 | |
Er | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.758 | 6.842 | 5.262 | 6.8 | 3.952 | 5.196 | 5.148 | 5.17 | 4.49 | 4.686 | 4.52 | 5.296 | 4.738 | |
Eu | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.758 | 6.842 | 5.262 | 6.8 | 3.922 | 5.186 | 5.138 | 5.16 | 4.49 | 4.686 | 4.52 | 5.296 | 4.738 | |
Fe | 60.07 | 62.94 | 60.54 | 68.12 | 64.88 | 62.56 | 75.62 | 65.16 | 93.25 | 715.346 | 481.318 | 103.8 | 95.07 | 62.58 | 64.74 | 48.15 | 57.85 | 49.75 | |
Gd | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.758 | 6.852 | 5.272 | 6.81 | 3.962 | 5.206 | 5.148 | 5.17 | 4.49 | 4.686 | 4.52 | 5.296 | 4738 | |
Ho | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.758 | 6.842 | 5.262 | 6.8 | 3.922 | 5.186 | 5.138 | 5.16 | 4.49 | 4.686 | 4.52 | 5.296 | 4.738 | |
K | 335.042 | 508.986 | 844.134 | 380.16 | 887.848 | 703.366 | 480.15 | 941.447 | 508.97 | 2179.43 | 725.702 | 1080.7 | 671.9 | 376.975 | 417.781 | 316.82 | 278.76 | 246.656 | |
La | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.758 | 6.852 | 5.272 | 6.82 | 4.122 | 5.296 | 5.188 | 5.2 | 4.5 | 4.706 | 4.52 | 5.306 | 4.738 | |
Li | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.758 | 6.842 | 5.262 | 6.8 | 4.052 | 5.256 | 5.168 | 5.18 | 4.5 | 4.706 | 4.52 | 5.296 | 4.738 | |
Lu | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.758 | 6.842 | 5.262 | 6.8 | 3.932 | 5.186 | 5.138 | 5.16 | 4.49 | 4.686 | 4.52 | 5.296 | 4.738 | |
Mg | 305.472 | 290.496 | 318.147 | 258.022 | 270.161 | 300.616 | 337.068 | 376.002 | 504.9 | 441.39 | 601.05 | 429.537 | 332.73 | 242.14 | 308.14 | 197.19 | 205.826 | 161.572 | |
Mn | 5.928 | 6.244 | 5.942 | 6.618 | 6.216 | 5.808 | 6.952 | 5.342 | 7.02 | 6.702 | 6.726 | 5.668 | 5.56 | 4.65 | 5.036 | 4.55 | 5.386 | 4.758 | |
Na | 207.51 | 437.13 | 1782.8 | 727.02 | 837.94 | 1727.75 | 958.62 | 1843.66 | 3063.97 | 3356.63 | 2339.74 | 1803.24 | 1807.61 | 764.49 | 937.89 | 723.33 | 926.97 | 616.02 | |
Nd | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.768 | 6.852 | 5.272 | 6.82 | 4.112 | 5.286 | 5.188 | 5.19 | 4.5 | 4.706 | 4.52 | 5.306 | 4.738 | |
Ni | 5.928 | 6.244 | 5.942 | 6.618 | 6.216 | 5.768 | 6.862 | 5.302 | 6.84 | 4.142 | 5.296 | 5.198 | 5.21 | 4.51 | 4.706 | 4.52 | 5.306 | 4.738 | |
P | 6.188 | 6.544 | 6.372 | 7.028 | 7.136 | 6.888 | 9.152 | 7.992 | 9.81 | 58.83 | 62.36 | 56.37 | 55.54 | 46.69 | 48.03 | 45.52 | 53.39 | 47.74 | |
Pb | 5.948 | 6.244 | 5.942 | 6.608 | 6.216 | 5.798 | 6.862 | 5.292 | 6.83 | 39.36 | 51.92 | 51.43 | 51.68 | 44.93 | 46.88 | 45.2 | 52.96 | 47.38 | |
Pr | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.758 | 6.842 | 5.262 | 6.8 | 3.952 | 5.196 | 5.148 | 5.17 | 4.49 | 4.686 | 4.52 | 5.296 | 4.738 | |
Sc | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.758 | 6.842 | 5.262 | 6.8 | 3.952 | 5.196 | 5.148 | 5.17 | 4.49 | 4.686 | 4.52 | 5.296 | 4.738 | |
Sm | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.758 | 6.842 | 5.262 | 6.8 | 3.952 | 5.196 | 5.148 | 5.17 | 4.49 | 4.686 | 4.52 | 5.296 | 4.738 | |
Sr | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.758 | 6.842 | 5.302 | 6.87 | 5.372 | 5.456 | 5.358 | 5.2 | 4.53 | 4.706 | 4.52 | 5.306 | 4.738 | |
Tb | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.768 | 6.852 | 5.282 | 6.8 | 3.942 | 5.186 | 5.138 | 5.16 | 4.49 | 4.686 | 4.52 | 5.296 | 4.738 | |
Tm | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.758 | 6.842 | 5.262 | 6.8 | 3.922 | 5.186 | 5.138 | 5.16 | 4.49 | 4.686 | 4.52 | 5.296 | 4.738 | |
Y | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.758 | 6.842 | 5.262 | 6.81 | 4.022 | 5.246 | 5.158 | 5.18 | 4.5 | 4.696 | 4.52 | 5.296 | 4.738 | |
Yb | 5.928 | 6.244 | 5.942 | 6.608 | 6.206 | 5.758 | 6.842 | 5.262 | 6.8 | 3.922 | 5.186 | 5.138 | 5.16 | 4.49 | 4.686 | 4.52 | 5.296 | 4.738 | |
Zn | 77.094 | 53.094 | 30.3342 | 62.826 | 93.12 | 5.828 | 239.61 | 37.074 | 6.824 | 58.689 | 34.649 | 5.538 | 31.29 | 29.355 | 25.4344 | 94.94 | 31.806 | 4.758 |
UAV Parameters | Parameters from the Road (m) and Point Code | ||||||||||||||||||
190 | 170 | 150 | 130 | 110 | 90 | 70 | 50 | 30 | 0 | 30 | 50 | 70 | 90 | 110 | 130 | 150 | 170 | 190 | |
9W | 8W | 7W | 6W | 5W | 4W | 3W | 2W | 1W | 1E | 2E | 3E | 4E | 5E | 6E | 7E | 8E | 9E | ||
Blue_av | 128 | 124 | 124 | 123 | 121 | 125 | 125 | 134 | 141 | 154 | 144 | 131 | 128 | 123 | 124 | 124 | 122 | 123 | |
Cyan | 135 | 135 | 136 | 138 | 141 | 137 | 137 | 127 | 119 | 106 | 115 | 128 | 131 | 135 | 135 | 135 | 141 | 139 | |
Gray | 123 | 122 | 120 | 119 | 117 | 121 | 121 | 131 | 138 | 150 | 141 | 128 | 125 | 121 | 121 | 121 | 117 | 119 | |
Green | 123 | 122 | 120 | 119 | 117 | 121 | 122 | 131 | 138 | 150 | 141 | 127 | 124 | 121 | 121 | 121 | 118 | 119 | |
Hue | 147 | 139 | 156 | 151 | 146 | 144 | 140 | 142 | 150 | 157 | 152 | 157 | 161 | 145 | 153 | 155 | 141 | 145 | |
Intensity | 116 | 115 | 114 | 113 | 111 | 115 | 115 | 124 | 130 | 142 | 133 | 121 | 118 | 114 | 115 | 114 | 111 | 112 | |
Magnet | 132 | 133 | 135 | 136 | 138 | 134 | 133 | 124 | 117 | 105 | 114 | 128 | 131 | 134 | 134 | 134 | 137 | 136 | |
Red | 120 | 120 | 119 | 117 | 114 | 118 | 118 | 128 | 136 | 149 | 140 | 127 | 124 | 120 | 120 | 120 | 114 | 116 | |
Saturation | 6 | 3 | 4 | 6 | 6 | 6 | 6 | 5 | 4 | 5 | 4 | 4 | 4 | 3 | 4 | 3 | 6 | 6 | |
Yellow | 127 | 131 | 131 | 132 | 134 | 130 | 130 | 121 | 114 | 101 | 111 | 124 | 127 | 132 | 131 | 131 | 133 | 132 |
References
- Banerjee, A.D. Heavy metal levels and solid phase speciation in street dusts of Delhi, India. Environ. Pollut. 2002, 123, 95–105. [Google Scholar] [CrossRef]
- Margaryan, V.G.; Yerevan State University; Khachatryan, G.A. The current state of dust content in the atmospheric air of Yerevan. Ser. Earth Sci. 2022, 22, 21–25. [Google Scholar] [CrossRef]
- Skorbiłowicz, M.; Skorbiłowicz, E.; Łapiński, W. Assessment of Metallic Content, Pollution, and Sources of Road Dust in the City of Białystok (Poland). Aerosol Air Qual. Res. 2020, 20, 2507–2518. [Google Scholar] [CrossRef]
- Shinggu, D.Y.; Ogugbuaja, V.O.; Toma, I.; Barminas, J.T. Determination of heavy metals in the street duct in Yola, Nigeria. Afr. J. Pure Appl. Chem. 2010, 4, 17–21. [Google Scholar]
- Al-Khashman, O.A. Determination of metal accumulation in deposited street dusts in Amman, Jordan. Environ. Geochem. Health 2007, 29, 1–10. [Google Scholar] [CrossRef]
- Han, T.-H.; Kim, D.-O.; Lee, Y.; Suh, S.-J.; Jung, H.-C.; Oh, Y.-S.; Nam, J.-D. Gold Nanostructures Formed in Ionic Clusters of Perfluorinated Ionomer. Macromol. Rapid Commun. 2006, 27, 1483–1488. [Google Scholar] [CrossRef]
- Mahowald, N.; Kohfeld, K.; Hansson, M.; Balkanski, Y.; Harrison, S.; Prentice, I.C.; Schulz, M.; Rodhe, H. Dust sources and deposition during the last glacial maximum and current climate: A comparison of model results with paleodata from ice cores and marine sediments. J. Geophys. Res. Atmos. 1999, 104, 15895–15916. [Google Scholar] [CrossRef]
- Fedotov, P.S.; Ermolin, M.S.; Karandashev, V.K.; Ladonin, D.V. Characterization of size, morphology and elemental composition of nano-, submicron, and micron particles of street dust separated using field-flow fractionation in a rotating coiled column. Talanta 2014, 130, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Hjortenkrans, D.; Bergbäck, B.; Häggerud, A. New Metal Emission Patterns in Road Traffic Environments. Environ. Monit. Assess. 2006, 117, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Amato, F.; Querol, X.; Johansson, C.; Nagl, C.; Alastuey, A. A review on the effectiveness of street sweeping, washing and dust suppressants as urban PM control methods. Sci. Total Environ. 2010, 408, 3070–3084. [Google Scholar] [CrossRef]
- Hu, B.; Xue, J.; Zhou, Y.; Shao, S.; Fu, Z.; Li, Y.; Chen, S.; Qi, L.; Shi, Z. Modelling bioaccumulation of heavy metals in soil-crop ecosystems and identifying its controlling factors using machine learning. Environ. Pollut. 2020, 262, 114308. [Google Scholar] [CrossRef] [PubMed]
- Wan, D.; Zhang, N.; Chen, W.; Cai, P.; Zheng, L.; Huang, Q. Organic matter facilitates the binding of Pb to iron oxides in a subtropical contaminated soil. Environ. Sci. Pollut. Res. 2018, 25, 32130–32139. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.; Wang, X.; Zhang, Y.; Zhang, M.; Wang, K.; Xie, P.; Ji, H. The optimum pH and Eh for simultaneously minimizing bioavailable cadmium and arsenic contents in soils under the organic fertilizer application. Sci. Total Environ. 2019, 711, 135229. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-M.; Liu, D.-Y.; Zhao, Q.-Y.; Zhang, W.; Chen, X.-X.; Xu, S.-J.; Zou, C.-Q. Zinc fractions in soils and uptake in winter wheat as affected by repeated applications of zinc fertilizer. Soil Tillage Res. 2020, 200, 104612. [Google Scholar] [CrossRef]
- Squadrone, S.; Robetto, S.; Orusa, R.; Griglione, A.; Falsetti, S.; Paola, B.; Abete, M.C. Wildlife hair as bioindicators of metal exposure. Biol. Trace Element Res. 2022, 200, 5073–5080. [Google Scholar] [CrossRef]
- Zhang, P.; Qin, C.; Hong, X.; Kang, G.; Qin, M.; Yang, D.; Pang, B.; Li, Y.; He, J.; Dick, R.P. Risk assessment and source analysis of soil heavy metal pollution from lower reaches of Yellow River irrigation in China. Sci. Total Environ. 2018, 633, 1136–1147. [Google Scholar] [CrossRef]
- Zhao, Z.; Yan, S.; Duan, M.; Fu, J.; Wang, Q.; Liu, Z.; Song, F.; Tang, B.; Li, C.; Qin, G.; et al. Assessing heavy metal pollution and potential ecological risk of tea plantation soils. Int. J. Agric. Biol. Eng. 2019, 12, 185–191. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, H.; Tao, S. The Challenges and Solutions for Cadmium-contaminated Rice in China: A Critical Review. Environ. Int. 2016, 92–93, 515–532. [Google Scholar] [CrossRef]
- Upadhyay, M.K.; Majumdar, A.; Barla, A.; Bose, S.; Srivastava, S. An assessment of arsenic hazard in groundwater–soil–rice system in two villages of Nadia district, West Bengal, India. Environ. Geochem. Heal. 2019, 41, 2381–2395. [Google Scholar] [CrossRef]
- Sakagami, K.L.; Eamada, R.; Kurobe, T. Heavy metal contents in dust fall and soil of National Park for nature study in Tokyo. Mitteihingen Dtsch. Bodenkd. Gessellscaft 1982, 33, 59–66. [Google Scholar]
- Pan, L.; Ma, J.; Hu, Y.; Su, B.; Fang, G.; Wang, Y.; Wang, Z.; Wang, L.; Xiang, B. Assessments of levels, potential ecological risk, and human health risk of heavy metals in the soils from a typical county in Shanxi Province, China. Environ. Sci. Pollut. Res. 2016, 23, 19330–19340. [Google Scholar] [CrossRef]
- ATSDR (Agency of Toxic Substances and Disease Registry). Toxicological Profile for Lead, Update. Prepared by Clement International Corporation under Contract Number 205 -88-0608 for ATSDR; U.S. Public Health Services: Atlanta, GA, USA, 1993.
- Moiz, M.M.; William, A.S.; Raymond, S.H.Y. Introduction to Mixtures Toxicology and Risk Assessment. In Principles and Practice of Mixtures Toxicology; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2010; pp. 1–21. [Google Scholar]
- Yeganeh, M.; Afyuni, M.; Khoshgoftarmanesh, A.-H.; Soffianian, A.-R.; Schulin, R. Health Risks of Metals in Soil, Water, and Major Food Crops in Hamedan Province, Iran. Hum. Ecol. Risk Assess. Int. J. 2012, 18, 547–568. [Google Scholar] [CrossRef]
- Pan, L.; Wang, Y.; Ma, J.; Hu, Y.; Su, B.; Fang, G.; Wang, L.; Xiang, B. A review of heavy metal pollution levels and health risk assessment of urban soils in Chinese cities. Environ. Sci. Pollut. Res. 2017, 25, 1055–1069. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Chen, Q.; Deng, M.; Japenga, J.; Li, T.; Yang, X.; He, Z. Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in southeast China. J. Environ. Manag. 2018, 207, 159–168. [Google Scholar] [CrossRef]
- Orusa, T.; Orusa, R.; Viani, A.; Carella, E.; Mondino, E.B. Geomatics and EO Data to Support Wildlife Diseases Assessment at Landscape Level: A Pilot Experience to Map Infectious Keratoconjunctivitis in Chamois and Phenological Trends in Aosta Valley (NW Italy). Remote. Sens. 2020, 12, 3542. [Google Scholar] [CrossRef]
- Hafeez, S.; Wong, M.S.; Abbas, S.; Kwok, C.Y.; Nichol, J.; Lee, K.H.; Tang, D.; Pun, L. Detection and monitoring of marine pollution using remote sensing technologies. In Monitoring of Marine Pollution; IntechOpen: Vienna, Austria, 2019. [Google Scholar]
- Fiorentin, P.; Bettanini, C.; Lorenzini, E.; Aboudan, A.; Colombatti, G.; Ortolani, S.; Bertolo, A. MINLU: An instrumental suite for monitoring light pollution from drones or airballoons. In Proceedings of the 2018 5th IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace), Rome, Italy, 20–22 June 2018. [Google Scholar]
- Nanni, M.; Demattê, J.; Rodrigues, M.; Santos, G.; Reis, A.; Oliveira, K.; Cezar, E.; Furlanetto, R.; Crusiol, L.; Sun, L. Mapping Particle Size and Soil Organic Matter in Tropical Soil Based on Hyperspectral Imaging and Non-Imaging Sensors. Remote. Sens. 2021, 13, 1782. [Google Scholar] [CrossRef]
- Ben-Dor, E. Quantitative remote sensing of soil properties. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2002; pp. 173–243. [Google Scholar]
- Pospelov, P.I.; Moscow Automobile and Road Construction State Technical University (MADI); Tatashev, A.G.; Terentyev, A.V.; Karelina, M.Y.; Yashina, M.V. Bartlett Flows And Mathematical Description Of Motor Traffic Flows. H&ES Res. 2021, 13, 34–41. [Google Scholar] [CrossRef]
- Vasil’Ev, E. International competency requirements for public weather forecasters. Hydrometeorol. Res. Forecast. 2021, 3, 161–171. [Google Scholar] [CrossRef]
- Martin, J.; Schneebeli, M. Impact of the sampling procedure on the specific surface area of snow measurements with the IceCube. EGUsphere 2022, 4, 1–13. [Google Scholar] [CrossRef]
- Rocha, F.; Alves, A.; Homem, V. Exploring the Potential of Sewage Sludge as Agricultural Fertilizer: Determination of Heavy Metals and Nutrients by Microwave-Assisted Digestion Followed by ICP-OES Analysis. J. Chem. Educ. 2022, 99, 3218–3226. [Google Scholar] [CrossRef]
- Cicchino, A.; Nadarajah, S. Entropy stable split forms for the flux reconstruction high-order method: Three-dimensional numerical validation. In Aiaa Aviation 2021 Forum; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2021. [Google Scholar]
- Treller, A. Explicit Microsoft Excel Methods For Computerized System Validation. J. Valid. Technol. 2021, 27, 2–4. [Google Scholar] [CrossRef]
- Vallidevi, K.; Gopinath, K.P.; Nagarajan, K.K.; Prakash, D.G.; Sudhamsu, G.; Sudhish, S.; Al-Zahrani, S.A. Water Pollution Monitoring through Remote Sensing. Curr. Anal. Chem. 2021, 17, 802–814. [Google Scholar] [CrossRef]
- Phillips, B.B.; Bullock, J.M.; Osborne, J.L.; Gaston, K.J. Spatial extent of road pollution: A national analysis. Sci. Total Environ. 2021, 773, 145589. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Jin, T.; Yu, S.; Chu, H. Pollution characteristics and health risks of heavy metals in road dust in Ma’anshan, China. Environ. Sci. Pollut. Res. 2023, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, R.S.; Abuarab, M.E.; Ibrahim, M.M.; Baioumy, M.; Mokhtar, A. Assessment of environmental and toxicity impacts and potential health hazards of heavy metals pollution of agricultural drainage adjacent to industrial zones in Egypt. Chemosphere 2023, 318, 137872. [Google Scholar] [CrossRef]
- Zariņš, A.; Smirnovs, J.; Lācis, R. Evaluation Of Air Pollution Measurements In Urban Environment Considering Traffic Intensity. Constr. Sci. 2014, 15, 29. [Google Scholar] [CrossRef] [Green Version]
- Ragimov, A.; Mazirov, M.; Shenterova, E.; Zunimaymayti, A. Features of accumulation of heavy metals in the soil cover of the road territory on the example of the sudogodskiy district of the vladimir region. Succeses Mod. Nat. Sci. (Adv. Curr. Nat. Sci.) 2019, 122–127. [Google Scholar] [CrossRef]
- Jiang, S.Y.; Yang, F.; Chan, K.L.; Ning, Z. Water solubility of metals in coarse PM and PM 2.5 in typical urban environment in Hong Kong. Atmos. Pollut. Res. 2014, 5, 236–244. [Google Scholar] [CrossRef] [Green Version]
- Pagotto, C.; Rémy, N.; Legret, M.; Le Cloirec, P. Heavy Metal Pollution of Road Dust and Roadside Soil near a Major Rural Highway. Environ. Technol. 2001, 22, 307–319. [Google Scholar] [CrossRef]
- Chuan, M.C.; Shu, G.Y.; Liu, J.C. Solubility of heavy metals in a contaminated soil: Effects of redox potential and pH. Water Air Soil Pollut. 1996, 90, 543–556. [Google Scholar] [CrossRef]
- Król, A.; Mizerna, K.; Bożym, M. An assessment of pH-dependent release and mobility of heavy metals from metallurgical slag. J. Hazard. Mater. 2020, 384, 121502. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Yin, C.; Chen, M.; Wang, W. Risk Assessment of Heavy Metals in Street Dust Particles to a Stream Network. Soil Sediment Contam. Int. J. 2009, 18, 173–183. [Google Scholar] [CrossRef]
- Rieuwerts, J.; Thornton, I.; Farago, M.; Ashmore, M. Factors influencing metal bioavailability in soils: Preliminary investigations for the development of a critical loads approach for metals. Chem. Speciat. Bioavailab. 1998, 10, 61–75. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.; Kheir, R.B.; Adhikari, K.; Malinowski, R.; Greve, M.B.; Knadel, M.; Greve, M.H. Digital Mapping of Toxic Metals in Qatari Soils Using Remote Sensing and Ancillary Data. Remote. Sens. 2016, 8, 1003. [Google Scholar] [CrossRef] [Green Version]
- Mouazen, A.M.; Nyarko, F.; Qaswar, M.; Tóth, G.; Gobin, A.; Moshou, D. Spatiotemporal Prediction and Mapping of Heavy Metals at Regional Scale Using Regression Methods and Landsat 7. Remote. Sens. 2021, 13, 4615. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, X.; Cui, G.; Li, K.; Liu, Y.; Li, B.; Yao, Z. Source apportionment and ecological and health risk mapping of soil heavy metals based on PMF, SOM, and GIS methods in Hulan River Watershed, Northeastern China. Environ. Monit. Assess. 2022, 194, 181. [Google Scholar] [CrossRef]
- Neumann, N.N.; Derksen, C.; Smith, C.; Goodison, B. Characterizing local scale snow cover using point measurements during the winter season. Atmos.-Ocean 2006, 44, 257–269. [Google Scholar] [CrossRef]
- Yang, Y.; Christakos, G. Uncertainty assessment of heavy metal soil contamination mapping using spatiotemporal sequential indicator simulation with multi-temporal sampling points. Environ. Monit. Assess. 2015, 187, 571. [Google Scholar] [CrossRef]
- Guo, Y.; Liang, Y.; Deng, R.; Li, J.; Wang, J.; Hua, Z.; Tang, Y. Development and application of a new sensitivity analysis model for the remote sensing retrieval of heavy metals in water. Heliyon 2022, 8, e12033. [Google Scholar] [CrossRef]
- Koziol, K.; Uszczyk, A.; Pawlak, F.; Frankowski, M.; Polkowska, Ż. Seasonal and Spatial Differences in Metal and Metalloid Concentrations in the Snow Cover of Hansbreen, Svalbard. Front. Earth Sci. 2021, 8, 538762. [Google Scholar] [CrossRef]
- Kemper, T.; Sommer, S. Use of airborne hyperspectral data to estimate residual heavy metal contamination and acidification potential in the Guadiamar floodplain Andalusia, Spain after the Aznacollar mining accident. In Remote Sensing for Environmental Monitoring, GIS Applications, and Geology IV; Ehlers, M., Posa, F., Kaufmann, H.J., Michel, U., De Carolis, G., Eds.; SPIE: Bellingham, WA, USA, 2004. [Google Scholar]
- Strelnikova, D.; Anders, K.-H. Spatio-Temporal Interpolation of UAV Sensor Data. GI_Forum 2017, 1, 141–156. [Google Scholar] [CrossRef]
- Kim, E.; Nam, S.-H.; Ahn, C.H.; Lee, S.; Koo, J.-W.; Hwang, T.-M. Comparison of spatial interpolation methods for distribution map an unmanned surface vehicle data for chlorophyll-a monitoring in the stream. Environ. Technol. Innov. 2022, 28, 102637. [Google Scholar] [CrossRef]
- Nguyen, Q.L.; Cuong, C.X.; VAN Canh, L.; Bich, N.N.; Tran, D.A.; Bui, X.-N. 3D Spatial Interpolation Methods for Open-Pit Mining Air Quality with Data Acquired by Small UAV Based Monitoring System. Inżynieria Miner. 2020, 1, 263–272. [Google Scholar] [CrossRef]
- Chen, H.W.; Chen, C.-Y.; Nguyen, K.L.P.; Chen, B.-J.; Tsai, C.-H. Hyperspectral sensing of heavy metals in soil by integrating AI and UAV technology. Environ. Monit. Assess. 2022, 194, 518. [Google Scholar] [CrossRef] [PubMed]
Yellow | = | 255 − Blue |
Magenta | = | 255 − green |
Cyan | = | 255 − red |
Hue | = | Red − ((Green + Blue)/2) * 240/255 |
Saturation | = | √(Red2 + Green2 + Blue2 − Red * Green − Red * Blue − Green * Blue) * 240/255 |
Intensity | = | 1/3 * (Red + Green + Blue) * 240/255 |
Gray | = | 0.3 * Red + 0.59 * Green + 0.11 * Blue |
Metal | Blue_av | Cyan | Gray | Green | Hue | Intensity | Magenta | Red | Saturation | Yellow |
---|---|---|---|---|---|---|---|---|---|---|
Al/m2 | 0.83 | −0.83 | 0.82 | 0.83 | 0.38 | 0.82 | −0.83 | 0.83 | −0.13 | −0.83 |
Fe/m2 | 0.84 | −0.83 | 0.83 | 0.84 | 0.30 | 0.84 | −0.84 | 0.83 | −0.02 | −0.84 |
K/m2 | 0.62 | −0.62 | 0.62 | 0.61 | 0.39 | 0.64 | −0.61 | 0.62 | −0.03 | −0.62 |
Na/m2 | 0.85 | −0.85 | 0.85 | 0.84 | 0.46 | 0.86 | −0.85 | 0.85 | −0.15 | −0.85 |
Metal | Parameter | Coefficients | p-Value | Formula |
---|---|---|---|---|
Al/m2 | Red | 140.688 ** | 0.047 | 0.0567x + 117.67 |
Fe/m2 | Red | 161.131 ** | 0.016 | 0.0647x + 117.05 |
K/m2 | Intensity | 539.604 *** | 0.006 | 0.0171x + 107.99 |
Na/m2 | Intensity | 744.159 * | 0.069 | 0.0083x + 107.11 |
Multiple R | 0.936 | |||
R Square | 0.876 |
Metal | Blue_av | Cyan | Gray | Green | Hue | Intensity | Magenta | Red | Saturation | Yellow |
---|---|---|---|---|---|---|---|---|---|---|
Al/m2 | 0.86 | −0.86 | 0.85 | 0.85 | 0.45 | 0.86 | −0.85 | 0.86 | −0.10 | −0.86 |
Ca/m2 | 0.87 | −0.86 | 0.86 | 0.86 | 0.39 | 0.87 | −0.86 | 0.86 | −0.05 | −0.87 |
Ce/m2 | 0.86 | −0.86 | 0.85 | 0.85 | 0.45 | 0.86 | −0.85 | 0.86 | −0.09 | −0.86 |
Co/m2 | 0.88 | −0.89 | 0.88 | 0.87 | 0.46 | 0.88 | −0.87 | 0.89 | −0.14 | −0.88 |
Cr/m2 | 0.91 | −0.91 | 0.91 | 0.90 | 0.46 | 0.91 | −0.90 | 0.92 | −0.12 | −0.91 |
Cu/m2 | 0.87 | −0.87 | 0.86 | 0.86 | 0.45 | 0.87 | −0.86 | 0.87 | −0.10 | −0.87 |
Dy/m2 | 0.81 | −0.79 | 0.79 | 0.80 | 0.33 | 0.80 | −0.80 | 0.79 | 0.00 | −0.81 |
Er/m2 | 0.78 | −0.79 | 0.77 | 0.76 | 0.54 | 0.78 | −0.76 | 0.79 | −0.08 | −0.78 |
Fe/m2 | 0.87 | −0.87 | 0.86 | 0.86 | 0.45 | 0.87 | −0.86 | 0.87 | −0.10 | −0.87 |
K/m2 | 0.88 | −0.87 | 0.87 | 0.87 | 0.44 | 0.87 | −0.87 | 0.88 | −0.09 | −0.88 |
La/m2 | 0.87 | −0.80 | 0.86 | 0.86 | 0.45 | 0.87 | −0.86 | 0.87 | −0.10 | −0.87 |
Li/m2 | 0.82 | −0.84 | 0.81 | 0.81 | 0.46 | 0.82 | −0.81 | 0.83 | −0.12 | −0.82 |
Mg/m2 | 0.86 | −0.85 | 0.85 | 0.85 | 0.42 | 0.85 | −0.85 | 0.85 | −0.07 | −0.86 |
Mn/m2 | 0.86 | −0.86 | 0.85 | 0.85 | 0.44 | 0.86 | −0.85 | 0.86 | −0.09 | −0.86 |
Nd/m2 | 0.87 | −0.87 | 0.86 | 0.86 | 0.43 | 0.87 | −0.86 | 0.87 | −0.08 | −0.87 |
Ni/m2 | 0.90 | −0.90 | 0.89 | 0.89 | 0.43 | 0.90 | −0.89 | 0.90 | −0.08 | −0.90 |
P/m2 | 0.89 | −0.89 | 0.88 | 0.88 | 0.41 | 0.89 | −0.89 | 0.89 | −0.08 | −0.89 |
Pr/m2 | 0.82 | −0.83 | 0.82 | 0.81 | 0.52 | 0.82 | −0.81 | 0.83 | −0.12 | −0.82 |
Sc/m2 | 0.82 | −0.83 | 0.82 | 0.81 | 0.52 | 0.83 | −0.81 | 0.83 | −0.12 | −0.82 |
Sm/m2 | 0.82 | −0.83 | 0.82 | 0.81 | 0.52 | 0.83 | −0.81 | 0.83 | −0.12 | −0.82 |
Y/m2 | 0.86 | −0.87 | 0.86 | 0.85 | 0.47 | 0.86 | −0.85 | 0.87 | −0.14 | −0.86 |
Zn/m2 | 0.89 | −0.89 | 0.88 | 0.88 | 0.43 | 0.89 | −0.88 | 0.89 | −0.09 | −0.89 |
Metal | Parameter | Coefficients | p-Value | Formula |
---|---|---|---|---|
Al/m2 | Red | 33.842 ** | 0.014 | 0.3029x + 119.14 |
Ca/m2 | Red | 46.509 ** | 0.052 | 0.1813x + 119.59 |
Ce/m2 | Red | 0.129 ** | 0.012 | 80.567x + 119.08 |
Co/m2 | Red | 0.027 ** | 0.011 | 366.22x + 118.86 |
Cr/m2 | Red | 0.063 ** | 0.013 | 135.44x + 117.26 |
Cu/m2 | Red | 0.165 ** | 0.045 | 52.174x + 118.55 |
Dy/m2 | Red | 0.008 ** | 0.059 | 1028x + 121.05 |
Er/m2 | Red | 0.008 * | 0.071 | 980x + 120.07 |
Fe/m2 | Red | 68.578 ** | 0.017 | 0.1441x + 118.99 |
K/m2 | Red | 9.009 ** | 0.044 | 0.9246x + 119.04 |
La/m2 | Red | 0.063 *** | 0.011 | 162.11x + 119.01 |
Li/m2 | Red | 0.051 *** | 0.005 | 235.22x + 119.67 |
Mg/m2 | Red | 20.183 ** | 0.024 | 0.484x + 119.49 |
Mn/m2 | Red | 0.911 ** | 0.010 | 11.581x + 119.18 |
Nd/m2 | Red | 0.059 ** | 0.010 | 172.79x + 118.92 |
Ni/m2 | Red | 0.050 ** | 0.032 | 157.53x + 117.91 |
P/m2 | Red | 5.008 ** | 0.024 | 1.7508x + 118.01 |
Pr/m2 | Red | 0.011 ** | 0.019 | 933.94x + 119.7 |
Sc/m2 | Red | 0.011 *** | 0.019 | 933.94x + 119.7 |
Sm/m2 | Red | 0.011 *** | 0.019 | 933.94x + 119.7 |
Y/m2 | Red | 0.035 *** | 0.005 | 315.73x + 119.3 |
Zn/m2 | Red | 0.506 ** | 0.014 | 18.833x + 118.3 |
Multiple R | 0.942 | |||
R Square | 0.888 |
Blue_av | Cyan | Gray | Green | Hue | Intensity | Magenta | Red | Saturation | Yellow | |
---|---|---|---|---|---|---|---|---|---|---|
Al/m2 | 0.84 | −0.84 | 0.83 | 0.84 | 0.40 | 0.84 | −0.84 | 0.84 | −0.12 | −0.84 |
Ba/m2 | 0.85 | −0.85 | 0.84 | 0.85 | 0.34 | 0.85 | −0.85 | 0.85 | −0.06 | −0.85 |
Fe/m2 | 0.86 | −0.86 | 0.85 | 0.86 | 0.36 | 0.86 | −0.86 | 0.86 | −0.05 | −0.87 |
K/m2 | 0.64 | −0.64 | 0.63 | 0.62 | 0.39 | 0.65 | −0.62 | 0.64 | −0.04 | −0.64 |
Na/m2 | 0.85 | −0.85 | 0.85 | 0.84 | 0.45 | 0.86 | −0.84 | 0.85 | −0.15 | −0.85 |
Metal | Parameter | Coefficients | p-Value | Formula |
---|---|---|---|---|
Al/m2 | Red | 174.530 ** | 0.032 | 0.0488x + 117.78 |
Ba/m2 | Red | 48.310 *** | 0.008 | 0.2384x + 118.91 |
Fe/m2 | Red | 229.709 ** | 0.011 | 0.046x+ 117.48 |
K/m2 | Intensity | 539.699 *** | 0.006 | 0.017x + 107.92 |
Na/m2 | Intensity | 744.855 * | 0.069 | 0.0082x + 107.12 |
Multiple R | 0.941 | |||
R Square | 0.886 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baah, G.A.; Savin, I.Y.; Vernyuk, Y.I. Pollution from Highways Detection Using Winter UAV Data. Drones 2023, 7, 178. https://doi.org/10.3390/drones7030178
Baah GA, Savin IY, Vernyuk YI. Pollution from Highways Detection Using Winter UAV Data. Drones. 2023; 7(3):178. https://doi.org/10.3390/drones7030178
Chicago/Turabian StyleBaah, Gabriel A., Igor Yu. Savin, and Yuri I. Vernyuk. 2023. "Pollution from Highways Detection Using Winter UAV Data" Drones 7, no. 3: 178. https://doi.org/10.3390/drones7030178
APA StyleBaah, G. A., Savin, I. Y., & Vernyuk, Y. I. (2023). Pollution from Highways Detection Using Winter UAV Data. Drones, 7(3), 178. https://doi.org/10.3390/drones7030178