Searching for Scalable Networks in Unmanned Aerial Vehicle Infrastructure Using Spatio-Attack Course-of-Action
Abstract
:1. Introduction
- The proposed algorithm operates automatically with no data issues in scalable networks.
- The proposed algorithm can maximize total rewards while finding the optimal attack path.
- The proposed algorithm was applied to two UAV network scenarios to verify that the optimal attack path is well established.
2. Preliminaries
2.1. Security Threat Models in UAV Infrastructure
2.2. Existing COA Attack Search Methods
2.3. Markov Decision Process (MDP)-Based Algorithm
3. Spatio-Attack COA Search
4. Performance Evaluation
4.1. Evaluation Setting
4.2. Example-Based Evaluation Results Using Attack Graph
4.3. Comparison Results
4.3.1. Scenario 1
4.3.2. Scenario 2
4.4. Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shin, M.; Kim, J.; Levorato, M. Auction-based Charging Scheduling with Deep Learning Framework for Multi-Drone Networks. IEEE Trans. Veh. Technol. 2019, 68, 4235–4248. [Google Scholar] [CrossRef] [Green Version]
- Sathyamoorthy, D. A Review of Security Threats of Unmanned Aerial Vehicles and Mitigation Steps. J. Def. Secur. Technol. 2015, 6, 81–97. [Google Scholar]
- Sathyamoorthy, D. Key Defence R&D Fields to Develop the National Defence Industry: Focus on C4ISR in Support of Network Centric Operations and Unmanned Vehicles. Def. S&T Tech. Bull. 2010, 3, 43–60. [Google Scholar]
- Bhattacharjee, D. Unmanned Aerial Vehicles and Counter Terrorism Operations. 2015. Available online: http://ssrn.com/abstract=2608969 (accessed on 25 February 2023).
- Jung, S.; Yun, W.J.; Kim, J.; Kim, J.H. Infrastructure-Assisted Cooperative Multi-UAV Deep Reinforcement Energy Trading Learning for Big-Data Processing. In Proceedings of the International Conference on Information Networking (ICOIN), Jeju Island, Republic of Korea, 13–16 January 2021; pp. 159–162. [Google Scholar]
- Jung, S.; Yun, W.J.; Shin, M.; Kim, J.; Kim, J.H. Orchestrated Scheduling and Multi-Agent Deep Reinforcement Learning for Cloud-Assisted Multi-UAV Charging Systems. IEEE Trans. Veh. Technol. 2021, 70, 5362–5377. [Google Scholar] [CrossRef]
- Yun, W.J.; Park, S.; Kim, J.; Shin, M.; Jung, S.; Mohaisen, D.A.; Kim, J.H. Cooperative Multiagent Deep Reinforcement Learning for Reliable Surveillance via Autonomous Multi-UAV Control. IEEE Trans. Ind. Inform. 2022, 18, 7086–7096. [Google Scholar] [CrossRef]
- Jung, S.; Kim, J. Adaptive and Stabilized Real-Time Super-Resolution Control for UAV-Assisted Smart Harbor Surveillance Platforms. J. Real-Time Image Process 2021, 18, 1815–1825. [Google Scholar] [CrossRef]
- Yun, W.J.; Jung, S.; Kim, J.; Kim, J.H. Distributed Deep Reinforcement Learning for Autonomous Aerial eVTOL Mobility in Drone Taxi Applications. ICT Express 2021, 7, 1–4. [Google Scholar] [CrossRef]
- Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of Things for Smart Cities. IEEE Internet Things J. 2014, 1, 22–32. [Google Scholar] [CrossRef]
- Saad, M.; Choi, J.; Nyang, D.; Kim, J.; Mohaisen, A. Toward Characterizing Blockchain-Based Cryptocurrencies for Highly Accurate Predictions. IEEE Syst. J. 2020, 14, 321–332. [Google Scholar] [CrossRef]
- Dao, N.N.; Phan, T.V.; Sa’ad, U.; Kim, J.; Bauschert, T.; Do, D.T.; Cho, S. Securing Heterogeneous IoT With Intelligent DDoS Attack Behavior Learning. IEEE Syst. J. 2021, 16, 1974–1983. [Google Scholar] [CrossRef]
- Park, J.; Samarakoon, S.; Elgabli, A.; Kim, J.; Bennis, M.; Kim, S.L.; Debbah, M. Communication-Efficient and Distributed Learning Over Wireless Networks: Principles and Applications. Proc. IEEE 2021, 109, 796–819. [Google Scholar] [CrossRef]
- Malik, A.; Kim, J.; Kim, K.S.; Shin, W.Y. A Personalized Preference Learning Framework for Caching in Mobile Networks. IEEE Trans. Mob. Comput. 2021, 20, 2124–2139. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Kwon, D.; Park, L.; Kim, J.; Cho, S. Multiscale LSTM-Based Deep Learning for Very-Short-Term Photovoltaic Power Generation Forecasting in Smart City Energy Management. IEEE Syst. J. 2021, 15, 346–354. [Google Scholar] [CrossRef]
- Meteriz, U.; Fazil Yildiran, N.; Kim, J.; Mohaisen, D. Understanding the Potential Risks of Sharing Elevation Information on Fitness Applications. In Proceedings of the IEEE International Conference on Distributed Computing Systems (ICDCS), Singapore, 29 November–1 December 2020; pp. 464–473. [Google Scholar]
- Shin, M.; Kim, J. Randomized Adversarial Imitation Learning for Autonomous Driving. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), Macao, China, 10–16 August 2019; pp. 4590–4596. [Google Scholar]
- Shin, M.; Choi, D.H.; Kim, J. Cooperative Management for PV/ESS-Enabled Electric Vehicle Charging Stations: A Multiagent Deep Reinforcement Learning Approach. IEEE Trans. Ind. Inform. 2020, 16, 3493–3503. [Google Scholar] [CrossRef]
- Testa, A.; Cinque, M.; Coronato, A.; De Pietro, G.; Augusto, J.C. Heuristic strategies for assessing wireless sensor network resiliency: An event-based formal approach. J. Heuristics 2015, 21, 145–175. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Chen, Y.; Wang, P.; Yan, Z. Security Threats and Countermeasures of Unmanned Aerial Vehicle Communications. IEEE Commun. Stand. Mag. 2021, 5, 41–47. [Google Scholar] [CrossRef]
- He, D.; Chan, S.; Guizani, M. Communication Security of Unmanned Aerial Vehicles. IEEE Wirel. Commun. 2016, 24, 134–139. [Google Scholar] [CrossRef]
- Shakhatreh, H.; Sawalmeh, A.H.; Al-Fuqaha, A.; Dou, Z.; Almaita, E.; Khalil, I.; Othman, N.S.; Khreishah, A.; Guizani, M. Unmanned Aerial Vehicles: A Survey on Civil Applications and Key Research Challenges. IEEE Access 2019, 7, 48572–48634. [Google Scholar] [CrossRef]
- Gittleson, K. Data-Stealing Snoopy Drone Unveiled at Black Hat. BBC News. 2014. Available online: https://www.bbc.com/news/technology-26762198 (accessed on 25 February 2023).
- Gettinger, D. Domestic Drone Threats; Bard College Center for the Study of the Drone: Hudson, NY, USA, 2015. [Google Scholar]
- Lee, J.; Moon, D.; Kim, I. Technological Trends in Cyber Attack Simulations. Electron. Telecommun. Trends 2020, 35, 34–48. [Google Scholar]
- Nagaraju, V.; Fiondella, L.; Wandji, T. A Survey of Fault and Attack Tree Modeling and Analysis for Cyber Risk Management. In Proceedings of the IEEE International Symposium on Technologies for Homeland Security (HST), Boston, MA, USA, 25–26 April 2017; pp. 1–6. [Google Scholar]
- Ghosh, N.; Ghosh, S.K. A Planner-based Approach to Generate and Analyze Minimal Attack Graph. Appl. Intell. 2012, 36, 369–390. [Google Scholar] [CrossRef]
- Liang, X.; Xiao, Y. Game Theory for Network Security. IEEE Commun. Surv. Tutor. 2013, 15, 472–486. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Liu, J.; Hou, D.; Zhong, X.; Zhang, Y. Autonomous Penetration Testing Based on Improved Deep Q-Network. Appl. Sci. 2021, 11, 8823. [Google Scholar] [CrossRef]
- Hong, J.; Kim, D.S. Harms: Hierarchical Attack Representation Models for Network Security Analysis; Edith Cowan University: Perth, Australia, 2012. [Google Scholar]
- Schwartz, J.; Kurniawati, H.; El-Mahassni, E. POMDP+ Information-Decay: Incorporating Defender’s Behaviour in Autonomous Penetration Testing. In Proceedings of the International Conference on Automated Planning and Scheduling, Nancy, France, 26–20 October 2020; Volume 30, pp. 235–243. [Google Scholar]
- Sutton, R.S. Introduction: The Challenge of Reinforcement Learning. In Reinforcement Learning; Springer: Berlin/Heidelberg, Germany, 1992; pp. 1–3. [Google Scholar]
- AlShawi, I.S.; Yan, L.; Pan, W.; Luo, B. Lifetime Enhancement in Wireless Sensor Networks Using Fuzzy Approach and A-Star Algorithm. IEEE Sens. J. 2012, 12, 3010–3018. [Google Scholar] [CrossRef]
- Mell, P.; Scarfone, K.; Romanosky, S. A Complete Guide to the Common Vulnerability Scoring System Version 2.0. In Forum of Incident Response and Security Teams (FIRST); Forum of Incident Response and Security Teams (FIRST): Cary, NC, USA, 2007. [Google Scholar]
- Hu, Z.; Beuran, R.; Tan, Y. Automated Penetration Testing using Deep Reinforcement Learning. In Proceedings of the IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), Genoa, Italy, 16–18 June 2020; pp. 2–10. [Google Scholar]
- Ou, X.; Govindavajhala, S.; Appel, A.W. MulVAL: A Logic-based Network Security Analyzer. In Proceedings of the USENIX Security Symposium, Baltimore, MD, USA, 31 July–5 August 2005; Volume 8, pp. 113–128. [Google Scholar]
- Sharma, S.; Srijan, S.; Vidhya, J. Parallelizing Bidirectional A* Algorithm. In Intelligent Systems and Computer Technology; Advances in Parallel Computing; IOS Press: Amsterdam, The Netherlands, 2020; Volume 37, pp. 558–562. [Google Scholar]
- Boursianis, A.D.; Papadopoulou, M.S.; Diamantoulakis, P.; Liopa-Tsakalidi, A.; Barouchas, P.; Salahas, G.; Karagiannidis, G.; Wan, S.; Goudos, S.K. Internet of things (IoT) and Agricultural Unmanned Aerial Vehicles (UAVs) in Smart Farming: A Comprehensive Review. Internet Things 2022, 18, 100187. [Google Scholar] [CrossRef]
- Islam, N.; Rashid, M.M.; Pasandideh, F.; Ray, B.; Moore, S.; Kadel, R. A Review of Applications and Communication Technologies for Internet of Things (IoT) and Unmanned Aerial Vehicle (UAV) Based Sustainable Smart Farming. Sustainability 2021, 13, 1821. [Google Scholar] [CrossRef]
- Israr, A.; Abro, G.E.M.; Sadiq Ali Khan, M.; Farhan, M.; Bin Mohd Zulkifli, S.u.A. Internet of Things (IoT)-Enabled Unmanned Aerial Vehicles for the Inspection of Construction Sites: A Vision and Future Directions. Math. Probl. Eng. 2021, 2021, 9931112. [Google Scholar] [CrossRef]
- Li, W.; Cai, S.; Zheng, H. Research on Multi-task Cruise Path Planning of UAV Based on COA Optimization Algorithm. In Proceedings of the 3rd Asia-Pacific Conference on Image Processing, Electronics and Computers, Dalian, China, 14–16 April 2022; pp. 662–666. [Google Scholar]
Method | Automatic | No Data Issues | Maximize Reward | Scalable |
---|---|---|---|---|
Traditional COA attack | X | X | X | X |
Attack Tree | O | X | X | X |
Attack Graph | O | X | X | X |
Reinforcement Learning | O | O | O | X |
A-star | O | O | X | O |
Spatio-Attack COA | O | O | O | O |
Node | Description | Value |
---|---|---|
0 | execCode(UAV, root) | 100 |
1 | RULE 4 (Trojan horse installation) | 0.1 |
2 | accessFile(UAV, ‘/usr/local/share’) | 0.1 |
3 | RULE 16 (NFS semantics) | 0.1 |
4 | accessFile(fileServer, ‘/export’) | 0.1 |
5 | RULE 10 (execCode implies file access) | 0.3 |
6 | canAccessFile(fileServer, root, ‘/export’) | 0.1 |
7 | execCode(fileServer, root) | 0.3 |
8 | RULE 2 (remote exploit of a server program) | 1.794 |
9 | netAccess(fileServer, tcp, 80) | 0.1 |
10 | RULE 5 (multi-hop access) | 0.1 |
11 | hacl(webServer, fileServer, tcp, 80) | 0.1 |
12 | execCode(webServer, ‘Apache httpd’) | 0.3 |
13 | RULE 2 (remote exploit of a server program) | 3.698 |
14 | netAccess(webServer, tcp, 443) | 0.1 |
15 | RULE 6 (direct network access) | 0.1 |
16 | hacl(internet, webServer, tcp, 443) | 0.1 |
17 | attackerLocated(internet) | 0.01 |
18 | networkServiceInfo(webServer, https, tcp, 443, ‘Apache httpd’) | 0.1 |
19 | vulExists(webServer, ‘CVE-2015-3185’, https, remoteExploit, privEscalation) | 3.698 |
20 | networkServiceInfo(fileServer, http, tcp, 80, root) | 0.1 |
21 | vulExists(fileServer, ‘CVE-2006-3011’, http, remoteExploit, privEscalation) | 1.794 |
22 | RULE 17 (NFS shell) | 0.1 |
23 | hacl(webServer, fileServer, nfsProtocol, nfsPort) | 0.1 |
24 | nfsExportInfo(fileServer, ‘/export’, webServer) | 0.1 |
25 | nfsMounted(UAV, ‘/usr/local/share’, fileServer, ‘/export’, read) | 0.1 |
Node | Description | Value | Node | Description | Value |
---|---|---|---|---|---|
0 | execCode(UAV2, root) | 100 | 24 | vulExists(fireWall, ‘CVE-2012-0883’, https, remoteExploit, privEscalation) | 2.346 |
1 | RULE 4 (Trojan horse installation) | 0.1 | 25 | networkServiceInfo(webServer, https, https, 80, ‘Apache httpd’) | 0.1 |
2 | accessFile(UAV2, ‘/usr/local/share’) | 0.1 | 26 | vulExists(webServer, ‘CVE-2012-0053’, https, remoteExploit, privEscalation) | 3.698 |
3 | RULE 16 (NFS semantics) | 0.1 | 27 | RULE 5 (multi-hop access) | 0.1 |
4 | accessFile(fileServer, ‘/export’) | 0.1 | 28 | execCode(webServer, root) | 0.3 |
5 | RULE 10 (execCode implies file access) | 0.3 | 29 | RULE 4 (Trojan horse installation) | 0.1 |
6 | canAccessFile(fileServer, root, ‘/export’) | 0.1 | 30 | accessFile(webServer, ‘/export’) | 0.1 |
7 | execCode(fileServer, root) | 0.3 | 31 | RULE 17 (NFS shell) | 0.1 |
8 | RULE 2 (remote exploit of a server program) | 1.794 | 32 | hacl(fireWall, webServer, nfsProtocol, nfsPort) | 0.1 |
9 | netAccess(fileServer, tcp, 80) | 0.1 | 33 | nfsExportInfo(webServer, ‘/export’, fireWall) | 0.1 |
10 | RULE 5 (multi-hop access) | 0.1 | 34 | networkServiceInfo(fileServer, http, tcp, 80, root) | 0.1 |
11 | hacl(webServer, fileServer, tcp, 80) | 0.1 | 35 | vulExists(fileServer, ‘CVE-2006-3011’, http, remoteExploit, privEscalation) | 1.794 |
12 | execCode(webServer, ‘Apache httpd’) | 0.3 | 36 | RULE 17 (NFS shell) | 0.1 |
13 | RULE 2 (remote exploit of a server program) | 3.698 | 37 | hacl(webServer, fileServer, nfsProtocol, nfsPort) | 0.1 |
14 | netAccess(webServer, https, 80) | 0.1 | 38 | nfsExportInfo(fileServer, ‘/export’, webServer) | 0.1 |
15 | RULE 5 (multi-hop access) | 0.1 | 39 | RULE 17 (NFS shell) | 0.1 |
16 | hacl(fireWall, webServer, https, 80) | 0.1 | 40 | nfsMounted(UAV2, ‘/usr/local/share’, fileServer, ‘/export’, read) | 0.1 |
17 | execCode(fireWall, ‘Apache’) | 0.3 | 41 | RULE 16 (NFS semantics) | 0.1 |
18 | RULE 2 (remote exploit of a server program) | 2.346 | 42 | accessFile(mailServer, ‘/export’) | 0.1 |
19 | netAccess(fireWall, tcp, 443) | 0.1 | 43 | RULE 17 (NFS shell) | 0.1 |
20 | RULE 6 (direct network access) | 0.1 | 44 | hacl(webServer, mailServer, nfsProtocol, nfsPort) | 0.1 |
21 | hacl(internet, fireWall, tcp, 443) | 0.1 | 45 | nfsExportInfo(mailServer, ‘/export’, webServer) | 0.1 |
22 | attackerLocated(internet) | 0.01 | 46 | RULE 17 (NFS shell) | 0.1 |
23 | networkServiceInfo(fireWall, https, tcp, 443, ‘Apache’) | 0.1 | 47 | nfsMounted(UAV2, ‘/usr/local/share’, mailServer, ‘/export’, read) | 0.1 |
Algorithm | Reward | Step |
---|---|---|
Spatio-Attack COA | 14.293 | 15 |
A-star | 13.493 | 16 |
Step | Algorithm | |||
---|---|---|---|---|
Spatio-Attack COA | A-Star | |||
Node | Reward | Node | Reward | |
1 | 17 | 0.01 | 17 | 0.01 |
2 | 15 | 0.11 | 15 | 0.11 |
3 | 14 | 0.31 | 14 | 0.31 |
4 | 13 | 7.706 | 13 | 7.706 |
5 | 12 | 8.306 | 12 | 8.306 |
6 | 10 | 8.506 | 22 | 8.106 |
7 | 9 | 8.706 | 4 | 8.306 |
8 | 8 | 12.294 | 3 | 8.506 |
9 | 7 | 12.894 | 3 | 8.506 |
10 | 5 | 13.494 | 2 | 8.706 |
11 | 4 | 13.694 | 2 | 8.706 |
12 | 3 | 13.894 | 1 | 8.906 |
13 | 2 | 14.094 | 1 | 12.294 |
14 | 1 | 14.294 | 1 | 12.894 |
15 | 0 | Target found | 1 | 13.494 |
16 | - | - | 0 | Target found |
Algorithm | Reward | Step |
---|---|---|
Spatio-Attack COA | 19.986 | 19 |
A-star | 14.198 | 30 |
Step | Algorithm | |||
---|---|---|---|---|
Spatio-Attack COA | A-Star | |||
Node | Reward | Node | Reward | |
1 | 22 | 0.01 | 22 | 0.01 |
2 | 20 | 0.11 | 20 | 0.11 |
3 | 19 | 0.31 | 19 | 0.31 |
4 | 18 | 5.002 | 18 | 5.002 |
5 | 17 | 5.602 | 17 | 5.602 |
6 | 15 | 5.802 | 31 | 5.402 |
7 | 14 | 6.002 | 30 | 5.602 |
8 | 13 | 13.398 | 30 | 5.802 |
9 | 12 | 13.998 | 30 | 5.802 |
10 | 10 | 14.198 | 30 | 6.002 |
11 | 9 | 14.398 | 28 | 6.402 |
12 | 8 | 17.986 | 28 | 6.202 |
13 | 7 | 18.586 | 39 | 6.202 |
14 | 5 | 19.186 | 4 | 6.402 |
15 | 4 | 19.386 | 4 | 6.402 |
16 | 3 | 19.586 | 3 | 6.602 |
17 | 2 | 19.786 | 3 | 6.602 |
18 | 1 | 19.986 | 3 | 6.602 |
19 | 0 | Target found | 2 | 6.802 |
20 | - | - | 2 | 6.802 |
21 | - | - | 1 | 7.002 |
22 | - | - | 1 | 10.39 |
23 | - | - | 1 | 10.99 |
24 | - | - | 1 | 11.59 |
25 | - | - | 1 | 13.398 |
26 | - | - | 1 | 13.998 |
27 | - | - | 1 | 13.798 |
28 | - | - | 1 | 13.798 |
29 | - | - | 1 | 14.198 |
30 | - | - | 0 | Target found |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, S.B.; Kim, D.H. Searching for Scalable Networks in Unmanned Aerial Vehicle Infrastructure Using Spatio-Attack Course-of-Action. Drones 2023, 7, 249. https://doi.org/10.3390/drones7040249
Son SB, Kim DH. Searching for Scalable Networks in Unmanned Aerial Vehicle Infrastructure Using Spatio-Attack Course-of-Action. Drones. 2023; 7(4):249. https://doi.org/10.3390/drones7040249
Chicago/Turabian StyleSon, Seok Bin, and Dong Hwa Kim. 2023. "Searching for Scalable Networks in Unmanned Aerial Vehicle Infrastructure Using Spatio-Attack Course-of-Action" Drones 7, no. 4: 249. https://doi.org/10.3390/drones7040249
APA StyleSon, S. B., & Kim, D. H. (2023). Searching for Scalable Networks in Unmanned Aerial Vehicle Infrastructure Using Spatio-Attack Course-of-Action. Drones, 7(4), 249. https://doi.org/10.3390/drones7040249