Model, Control, and Realistic Visual 3D Simulation of VTOL Fixed-Wing Transition Flight Considering Ground Effect
Abstract
:1. Introduction
- The paper presents a dynamic model of VFW using the Newton–Euler approach and bird take-off mode transition trajectory.
- The paper also proposes a ground effect model that influences flight stability during the transition. This model is an important consideration that was not previously addressed in similar research.
- To handle the bird take-off mode transition and compensate for disturbances, this study applies a robust LQR controller.
- Finally, the paper conducts a realistic 3D simulation of VFW’s bird take-off mode transition using Gazebo/ROS. This simulation is an essential step in verifying the model and robustness of the controller in the presence of external disturbances and ground effects.
2. System Modeling and Parameters
2.1. Mathematical Model of VTOL Fixed Wing
2.2. Ground Effect
2.3. VFW Simulation Parameters
Algorithm 1: URDF Configuration. |
<robot name=“quad-plane”> <link name=“base_link”> <inertial> <origin … /> <mass … /> <inertia … /> </inertial> <visual> <origin … /> <geometry> … </geometry> <material … /> </material> </visual> <collision> <origin … /> <geometry> … </geometry> </collision> </link> <joint name … type … > <origin… /> <parent link …/> <child link… /> <axis … /> <limit … /> </joint> <plugin> |
Algorithm 2: Aerodynamic Plugin Parameters. |
<gazebo> <plugin name=“aero_fly” filename=“libLiftDragPlugin.so”> <air_density> … </air_density> # Density of the fluid this model is suspended in (kg/m3) <cla> … </cla> #The ratio of the coefficient of lift and alpha slope before stall <cla_stall> … </cla_stall> #The ratio of coefficient of lift and alpha slope after stall <cda> … </cda> #The ratio of the coefficient of drag and alpha slope before stall <cda_stall> … </cda_stall> #The ratio of coefficient of drag and alpha slope after stall <alpha_stall> … </alpha_stall> #Angle of attack at stall point (radians) <a0> … </a0> #initial angle of attack (radians) <area> … </area> #Surface area of the link (m2) <upward> x y z</upward> # 3-vector representing the upward direction of motion in the link frame <forward> x y z</forward> # 3-vector representing the forward direction of motion in the link frame <link_name>base_link</link_name> #Name of the link affected by the group of lift/drag properties <cp> x y z</cp> #Center of pressure in link frame. The forces due to lift and drag will be applied here </plugin> </gazebo> |
3. State Space Model and Controller
4. Simulation
4.1. Bird Take-Off Mode Transition Trajectory
4.2. Simulation Setup
4.3. Simulation Result
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jo, D.; Kwon, Y. Analysis of VTOL UAV Propellant Technology. J. Comput. Commun. 2017, 5, 76–82. [Google Scholar] [CrossRef]
- Govdeli, Y.; Tran, A.T.; Kayacan, E. Multiple Modeling and Fuzzy Switching Control of Fixed-Wing VTOL Tilt-Rotor UAV. In Fuzzy Techniques: Theory and Applications IFSA/NAFIPS, 5th ed.; Kearfott, R., Batyrshin, I., Reformat, M., Ceberio, M., Kreinovich, V., Eds.; Springer: Cham, Switzerland, 2019; Volume 1000, pp. 270–284. [Google Scholar]
- Cobleigh, B.R. Ikhana: A NASA UAS Supporting Long Duration Earth Science Missions; Technical Report NASA TM-2007-214614; NASA Dryden Flight Research Center: Edwards, CA, USA, 2007. [Google Scholar]
- Logan, M.; Chu, J.; Motter, M.; Carter, D.; Ol, M.; Zeune, C. Small UAV research and evolution in long endurance electric powered vehicles. In Proceedings of the AIAA Infotech at Aerospace Conference and Exhibit, Rohnert Park, NV, USA, 7–10 May 2007. [Google Scholar]
- Tielin, M.; Chuanguang, Y.; Wenbiao, G.; Zihan, X.; Qinling, Z.; Xiaoou, Z. Analysis of technical characteristics of fixed-wing VTOL UAV. In Proceedings of the IEEE International Conference on Unmanned Systems (ICUS), Beijing, China, 27–29 October 2017; pp. 293–297. [Google Scholar]
- Nugroho, G.; Zuliardiansyah, G.; Rasyiddin, A.A. Performance Analysis of Empennage Configurations on a Surveillance and Monitoring Mission of a VTOL-Plane UAV Using a Computational Fluid Dynamics Simulation. Aerospace 2022, 9, 208. [Google Scholar] [CrossRef]
- Gunarathna, J.K.; dan Munasinghe, R. Development of a Quad-rotor Fixed-wing Hybrid Unmanned Aerial Vehicle. In Proceedings of the Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 30 May–1 June 2018; pp. 72–77. [Google Scholar]
- Saeed, A.S.; Younes, A.B.; Cai, C.; Cai, G. A survey of hybrid Unmanned Aerial Vehicles. Prog. Aerosp. Sci. 2018, 98, 91–105. [Google Scholar] [CrossRef]
- Zaludin, Z.; Gires, E. Automatic Flight Control Requirements for Transition Flight Phases When Converting Long Endurance Fixed Wing UAV to VTOL Aircraft. In Proceedings of the 2019 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS), Selangor, Malaysia, 29 June 2019; pp. 273–278. [Google Scholar]
- Gu, H.; Lyu, X.; Li, Z.; Shen, S.; Zhang, F. Development and experimental verification of a hybrid vertical take-off and landing (VTOL) unmanned aerial vehicle(UAV). In Proceedings of the 2017 International Conference on Unmanned Aircraft Systems (ICUAS), Miami, FL, USA, 13–16 June 2017; pp. 160–169. [Google Scholar]
- Dundar, O.; Bilici, M.; Unler, T. Design and performance analyses of a fixed wing battery VTOL UAV. Int. J. Eng. Sci. Technol. 2020, 23, 1182–1193. [Google Scholar] [CrossRef]
- Gunarathna, J.K.; Munasinghe, R. Simultaneous Execution of Quad and Plane Flight Modes For Efficient Take-Off of Quad-Plane Unmanned Aerial Vehicles. Appl. Sci. 2021. accepted. [Google Scholar] [CrossRef]
- Kamal, A.M.; Ramirez, S.A. Design methodology for hybrid (VTOL + Fixed Wing) unmanned aerial vehicles. Aeronaut. Aerosp. Open Access J. 2018, 2, 165–176. [Google Scholar]
- Curtiss, J.H.C.; Sun, M.; Putman, W.F.; Hanker, J.E.J. Rotor aerodynamics in ground effect at low advance ratios. J. Am. Helicopter Soc. 1984, 29, 48–55. [Google Scholar] [CrossRef]
- Lee, T.E.; Leishman, J.G.; Ramasamy, M. Fluid dynamics of interacting blade tip vortices with a ground plane. J. Am. Helicopter Soc. 2010, 55, 2200500–2200516. [Google Scholar] [CrossRef]
- Tanner, P.; Overmeyer, A.; Jenkins, L.; Yao, C.S.; Bartram, S. Experimental investigation of rotorcraft outwash in ground effect. In Proceedings of the 71th Annual Forum of the American Helicopter Society, Virginia Beach, Virginia, 5–7 May 2015; pp. 1–26. [Google Scholar]
- Cuevas, P.S.; Heredia, G.; Ollero, A. Characterization of the Aerodynamic Ground Effect and Its Influence in Multirotor Control. Int. J. Aerosp. Eng. 2017, 2017, 1–17. [Google Scholar] [CrossRef]
- Bernard, D.D.C.; Riccardi, F.; Giurato, M.; Lovera, M. A dynamic analysis of ground effect for a quadrotor platform. Int. Fed. Autom. Control. 2017, 50, 10311–10316. [Google Scholar] [CrossRef]
- Alaez, D.; Olaz, X.; Prieto, M.; Porcellinis, P.; Villadangos, J. HIL Flight Simulator for VTOL-UAV Pilot Training Using X-Plane. Information 2023, 13, 585. [Google Scholar] [CrossRef]
- Deng, Z.; Guo, Z.; Wu, L.; You, Y. Trajectory Planning for Emergency Landing of VTOL Fixed-Wing Unmanned Aerial Vehicles. Mob. Inf. Syst. 2021, 2021, 6289822. [Google Scholar] [CrossRef]
- Wang, W.; Bai, X.; Zheng, L. PD control of VTOL aircraft trajectory tracking based on double-loop design. J. Phys. Conf. Ser. 2022, 2358, 012008. [Google Scholar] [CrossRef]
- Dharmawan, A.; Ashari, A.; Aprilia, A.G.; Handayani, A.M. Auto VTOL System on Quadrotor Using Madgwick Quaternion Kalman Filter and LQR. In Proceedings of the 2018 4th International Conference on Science and Technology (ICST), Yogyakarta, Indonesia, 7–8 August 2018; pp. 1–6. [Google Scholar]
- Pan, K.; Chen, Y.; Wang, Z.; Wu, H.; Cheng, L. Quadrotor Control based on Self-Tuning LQR. In Proceedings of the 2018 37th Chinese Control Conference (CCC), Wuhan, China, 25–27 July 2019; pp. 9974–9979. [Google Scholar]
- Shehzad, M.F.; Bilal, A.; Ahmad, H. Position & Attitude Control of an Aerial Robot (Quadrotor) With Intelligent PID and State feedback LQR Controller: A Comparative Approach. In Proceedings of the 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 8–12 January 2019; pp. 340–346. [Google Scholar]
- Kumar, K.K.S.; Arya, H.; Joshi, A. Automatic Control of Harrier Maneuver of an Agile Fixed-Wing UAV. In Proceedings of the 2019 Fifth Indian Control Conference (ICC), New Delhi, India, 9–11 January 2019; pp. 136–141. [Google Scholar]
- Jeevan, H.L.; Narahari, H.K.; Sriram, A.T. Development of pitch control subsystem of autopilot for a fixed wing unmanned aerial vehicle. In Proceedings of the 2018 2nd International Conference on Inventive Systems and Control (ICISC), Coimbatore, India, 9–10 January 2018; pp. 1233–1238. [Google Scholar]
- Dharmawan, A.; Putra, A.E.; Tresnayana, I.M.; Wicaksono, W.A. The Obstacle Avoidance System In A Fixed-Wing UAV When Flying Low Using LQR Method. In Proceedings of the 2019 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM), Surabaya, Indonesia, 19–20 November 2019; pp. 1–7. [Google Scholar]
- Nelissen, L.P.M. Development of Gazebo-Based High-Fidelity Simulation Environment for Morphing-Wing Uavs. Bachelor’s Thesis, University of Twente, Enschede, The Netherlands, December 2021. [Google Scholar]
- Alaez, D.; Olaz, X.; Prieto, M.; Villadangos, J.; Astrain, J.J. VTOL UAV digital twin for take-off, hovering and landing in different wind conditions. Simul. Model. Pract. Theory 2022, 123, 102703. [Google Scholar] [CrossRef]
- Meyer, J.; Sendobry, A.; Kohlbrecher, S.; Klingauf, U.; von Stryk, O. Comprehensive Simulation of Quadrotor UAVs Using ROS and Gazebo. In Proceedings of the Third International Simulation, Modeling, and Programming for Autonomous Robots, Tsukuba, Japan, 5–8 November 2012; pp. 400–411. [Google Scholar]
- Sciortino, C.; Fagiolini, A. ROS/Gazebo-Based Simulation of Quadcopter Aircrafts. In Proceedings of the 2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI), Palermo, Italy, 10–13 September 2018; pp. 1–6. [Google Scholar]
- Ale Isaac, M.S.; Luna, M.A.; Ragab, A.R.; Ale Eshagh Khoeini, M.M.; Kalra, R.; Campoy, P.; Flores Peña, P.; Molina, M. Medium-Scale UAVs: A Practical Control System Considering Aerodynamics Analysis. Drones 2022, 6, 244. [Google Scholar] [CrossRef]
- Danjun, L.; Yan, Z.; Zongying, S.; Geng, L. Autonomous landing of quadrotor based on ground effect modelling. In Proceedings of the 2015 34th Chinese Control Conference (CCC), Hangzhou, China, 28–30 July 2015; pp. 5647–5652. [Google Scholar]
- Davis, E.; Spollard, J.; Pounds, P. Passive height stability and trajectory repeatability of a quadrotor maneuvering in ground effect with regulated voltage bus. In Proceedings of the Australasian Conference on Robotics and Automation (ACRA 2015), Canberra, Australia, 2–4 December 2015. [Google Scholar]
- Sharf, I.; Nahon, M.; Harmat, A.; Khan, W.; Michini, M.; Speal, N.; Trentini, M.; Tsadok, T.; Wang, T. Ground effect experiments and model validation with Draganflyer X8 rotorcraft. In Proceedings of the 2014 International Conference on Unmanned Aircraft Systems (ICUAS), Orlando, FL, USA, 27–30 May 2014; pp. 1158–1166. [Google Scholar]
- Jo, D.; Kwon, Y. Development of Autonomous VTOL UAV for Wide Area Surveillance. World J. Eng. Technol. 2019, 7, 227–239. [Google Scholar] [CrossRef]
- 8083-1A; Aircraft Weight and Balance Handbook. U.S Department of Transportation, Federal Aviation Administration: Washington, DC, USA, 2007.
- Azman, S. Design the VTOL Aircraft for Land Surveying Purposes. Mechanical Engineering Study Program; Faculty of Mechanical Engineering, University Teknologi Malaysia: Skudai, Malaysia, 2018. [Google Scholar]
- Saengphet, W.; Thumthae, C. Conceptual Design of Fixed Wing-VTOL UAV for AED Transport. In Proceedings of the 7th TSME International Conference on Mechanical Engineering, Chiang Mai, Thailand, 13–16 December 2016. [Google Scholar]
- Anderson, J.D. Aircraft Performance and Design; Mc-Graw-Hill Education: New York, NY, USA, 1998. [Google Scholar]
- Wu, Z.; Wu, T.W. Influence of downwash flow on helicopter airborne missile initial trajectory. J. Proj. Rocket. Missiles Guid. 2009, 29, 202–204. [Google Scholar]
- Qin, Y.H.; Zhu, Q.H.; Shao, S. Aerodynamic characteristics analysis for hovering coaxial rotors in ground effect. J. Nanjing Univ. Aeronaut. Astronaut. 2015, 47, 266–274. [Google Scholar]
- Zheng, Y.; Yang, S.; Liu, X.; Wang, J.; Norton, T.; Chen, J.; Tan, Y. The computational fluid dynamic modeling of downwash flow field for a six-rotor UAV. Front. Agric. Sci. Eng. 2018, 5, 159–167. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
wing span | 1.470 m |
aircraft length | 0.924 m |
mass | 1.9835 kg |
airfoil wing | NACA 2412 |
airfoil propeller | NACA 2412 |
airfoil aileron, elevator dan rudder | NACA 0012 |
initial AoA fixed wing | 5° |
fixed wing and quadrotor propeller diameter | 0.254 m (10 inches) |
area formed propeller quadrotor rotate | 5.06 × 10−2 m2 |
distance center of mass and motor quadrotor | 0.38891 m |
center of mass | X = 0.34, Y = 0.00, Z = 0.036 |
gravity | 9.81 kg/m2 |
inertia about x-axis (Ix) | 0.023426 kg/m2 |
inertia about y-axis (Iy) | 0.044475 kg/m2 |
inertia about z-axis (Iz) | 0.066685 kg/m2 |
air density () | 1.225 kg/m3 |
coefficient torque (CT) | 1.3602 × 10−1 |
coefficient thrust (CQ) | 5.5555 × 10−2 |
Aerodynamics Parameter | Base_Link | Link_1, Link_2, Link_3, Link_4, Link_5 | Link_6, Link 7 | Link_8 | Link_9 |
---|---|---|---|---|---|
air_density | 1.225 | 1.225 | 1.225 | 1.225 | 1.225 |
cla | 4.75 | 4.75 | 5.9 | 5.9 | 5.9 |
cla_stall | −3.85 | −3.85 | −3.85 | −3.85 | −3.85 |
cda | −0.4 | −0.4 | −0.4 | −0.4 | −0.4 |
cda_stall | −0.92 | −0.92 | −0.92 | −0.92 | −0.92 |
alpha_stall | 0.339 | 1.5 | 0.339 | 0.339 | 0.339 |
a0 | 0.05 | 0.4 | 0.0 | 0.0 | 0.0 |
area | 0.2 | 0.02 | 0.04 | 0.05 | 0.04 |
upward | 0 0 1 | 0 0 1 (link_1, link_2, link_3, link_4) 1 0 0 (link_5) | 0 0 1 | 0 0 1 | 0 1 0 |
forward | −1 0 0 | 0 −1 0 (link_1, link_4) 0 1 0 (link_2, link_3, link_5) | −1 0 0 | −1 0 0 | −1 0 0 |
cp | 0.340 0.000 0.030 | 0.065 0.275 0.036 (link_1) 0.065 −0.275 0.036 (link_2) 0.615 −0.275 0.036 (link_3) 0.615 0.275 0.036 (link_4) 0 0 0 (link_5) | 0.394 0.312 0.046 (link_6) 0.394 −0.312 0.046 (link_7) | 0.900 0.000 0.015 | 1.571 0.000 0.010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irmawan, E.; Harjoko, A.; Dharmawan, A. Model, Control, and Realistic Visual 3D Simulation of VTOL Fixed-Wing Transition Flight Considering Ground Effect. Drones 2023, 7, 330. https://doi.org/10.3390/drones7050330
Irmawan E, Harjoko A, Dharmawan A. Model, Control, and Realistic Visual 3D Simulation of VTOL Fixed-Wing Transition Flight Considering Ground Effect. Drones. 2023; 7(5):330. https://doi.org/10.3390/drones7050330
Chicago/Turabian StyleIrmawan, Erwhin, Agus Harjoko, and Andi Dharmawan. 2023. "Model, Control, and Realistic Visual 3D Simulation of VTOL Fixed-Wing Transition Flight Considering Ground Effect" Drones 7, no. 5: 330. https://doi.org/10.3390/drones7050330
APA StyleIrmawan, E., Harjoko, A., & Dharmawan, A. (2023). Model, Control, and Realistic Visual 3D Simulation of VTOL Fixed-Wing Transition Flight Considering Ground Effect. Drones, 7(5), 330. https://doi.org/10.3390/drones7050330