Hierarchical Task Assignment for Multi-UAV System in Large-Scale Group-to-Group Interception Scenarios
Abstract
:1. Introduction
- The evaluation model may need to effectively evaluate the offensive and defensive situations of both parties and integrate the task assignment result with the interception technology to ensure the successful execution of the interception task.
- There will be clustering targets in large-scale interception scenarios, and UAVs may need to cooperate to complete the task. In addition, the execution capabilities of UAVs are different.
- The task assignment algorithm should provide feasible solutions in a short time to accommodate the high-speed movements of fixed-wing UAVs.
- A simple but accurate evaluation model is designed to describe complex group-to-group cooperative interception scenarios. Based on the Apollonius circle and the fixed-wing UAV dynamics model, the evaluation model can accurately describe the cooperative interception effectiveness of multiple UAVs and guide the solution of the task assignment problem.
- Under the hierarchical task assignment framework, this paper designs a heuristic model decomposition method for the interception scenarios. In the model decomposition phase, large-scale UAVs and targets are effectively divided based on distribution characteristics and interception advantage. In the task assignment phase, the network flow model (NFO) suitable for multi-UAV systems is established to determine the feasible solutions for each submodel. The simulation results show that the proposed algorithm can give the solution in milliseconds and reduce the runtime even more as the model scale increases.
2. Problem Formulation
3. Model Decomposition
3.1. Target Grouping Based on Feature Similarity Clustering
Algorithm 1 Feature Similarity Clustering with upper and lower bounds |
Input: ,,, Output: target clusters:
|
3.2. UAV Assignment Based on Interception Advantage
Algorithm 2 Assignment of UAVs |
Input: ,D Output: UAV teams:
|
4. Evaluation Model and Task Assignment Method
4.1. Evaluation Model Based on the Apollonius Circle
4.2. Task Assignment Based on Network Flow Model
4.3. Design of Interception Points for UAVs
5. Results and Analysis
5.1. Feasibility of the Hierarchical Task Assignment Scheme
5.2. Algorithm Runtime Analysis
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Laarni, J.; Väätänen, A.; Karvonen, H.; Lastusilta, T.; Saffre, F. Development of a Concept of Operations for a Counter-Swarm Scenario, Engineering Psychology and Cognitive Ergonomics. In Lecture Notes in Computer Science; Harris, D., Li, W.-C., Eds.; Springer International Publishing: Cham, Switzerland, 2022; Volume 13307, pp. 49–63. [Google Scholar]
- Brust, M.R.; Danoy, G.; Stolfi, D.H.; Bouvry, P. Swarm-based counter UAV defense system. Discov. Internet Things 2021, 1, 2. [Google Scholar] [CrossRef]
- Farlík, J.; Gacho, L. Researching UAV Threat–New Challenges. In Proceedings of the 2021 International Conference on Military Technologies (ICMT), Brno, Czech Republic, 8–11 June 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Beard, R.W.; McLain, T.W.; Goodrich, M.A.; Anderson, E.P. Coordinated target assignment and intercept for unmanned air vehicles. IEEE Trans. Robot. Autom. 2002, 18, 911–922. [Google Scholar] [CrossRef]
- Korsah, G.A.; Stentz, A.; Dias, M. A comprehensive taxonomy for multi-robot task allocation. Int. J. Robot. Res. 2013, 32, 1495–1512. [Google Scholar] [CrossRef]
- Gao, Y.; Xiang, J. Target assignemnt in BVR air Combat. J. Beijing Univ. Aeronaut. Astronaut. 2007, 3, 286–289. [Google Scholar] [CrossRef]
- Sun, Z.; Yang, J. Multi-missile interception for multi-targets: Dynamic situation assessment, target allocation and cooperative interception in groups. J. Frankl. Inst. 2022, 359, 5991–6022. [Google Scholar] [CrossRef]
- Wang, L.; Yao, Y.; He, F.; Liu, K. A novel cooperative mid-course guidance scheme for multiple intercepting missiles. Chin. J. Aeronaut. 2017, 30, 1140–1153. [Google Scholar] [CrossRef]
- Guo, J.; Hu, G.; Guo, Z.; Zhou, M. Evaluation Model, Intelligent Assignment, and Cooperative Interception in Multimissile and Multitarget Engagement. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 3104–3115. [Google Scholar] [CrossRef]
- Yang, J.; Thomas, A.G.; Singh, S.; Baldi, S.; Wang, X. A Semi-Physical Platform for Guidance and Formations of Fixed-Wing Unmanned Aerial Vehicles. Sensors 2020, 20, 1136. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.; Che, H. Task Assignment for Multivehicle Systems Based on Collaborative Neurodynamic Optimization. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 1145–1154. [Google Scholar] [CrossRef]
- Saravanan, S.; Ramanathan, K.C.; Ramya, M.M.; Janardhanan, M.N. Review on state-of-the-art dynamic task allocation strategies for multiple-robot systems. Ind. Robot 2020, 47, 929–942. [Google Scholar]
- Jia, X.; Meng, M.Q.-H. A survey and analysis of task allocation algorithms in multi-robot systems. In Proceedings of the 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), Shenzhen, China, 12–14 December 2013; pp. 2280–2285. [Google Scholar] [CrossRef]
- Zhang, J.; Xing, J. Cooperative task assignment of multi-UAV system. Chin. J. Aeronaut. 2020, 33, 2825–2827. [Google Scholar] [CrossRef]
- Tang, J.; Duan, H.; Lao, S. Swarm intelligence algorithms for multiple unmanned aerial vehicles collaboration: A comprehensive review. Artif. Intell. Rev. 2023, 56, 4295–4327. [Google Scholar] [CrossRef]
- Tang, J.; Chen, X.; Zhu, X.; Zhu, F. Dynamic Reallocation Model of Multiple Unmanned Aerial Vehicle Tasks in Emergent Adjustment Scenarios. IEEE Trans. Aerosp. Electron. Syst. 2022, 59, 1139–1155. [Google Scholar] [CrossRef]
- Wu, J.; Song, C.; Ma, J.; Wu, J.; Han, G. Reinforcement Learning and Particle Swarm Optimization Supporting Real-Time Rescue Assignments for Multiple Autonomous Underwater Vehicles. IEEE Trans. Intell. Transp. Syst. 2022, 23, 6807–6820. [Google Scholar] [CrossRef]
- Zhou, Z.; Feng, J.; Gu, B.; Ai, B.; Mumtaz, S.; Rodriguez, J.; Guizani, M. When Mobile Crowd Sensing Meets UAV: Energy-Efficient Task Assignment and Route Planning. IEEE Trans. Commun. 2018, 66, 5526–5538. [Google Scholar] [CrossRef]
- Martin, J.G.; García, R.A.; Camacho, E.F. Event-MILP-Based Task Allocation for Heterogeneous Robotic Sensor Network for Thermosolar Plants. J. Intell. Robot. Syst. 2021, 102, 1. [Google Scholar] [CrossRef]
- Alqahtani, S.; Riley, I.; Taylor, S.; Gamble, R.; Mailler, R. Task Allocation in Uncertain Environments using a QuadTree and Flow network. In Proceedings of the 2018 International Conference on Unmanned Aircraft Systems (ICUAS), Dallas, TX, USA, 12–15 June 2018; pp. 74–83. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, P.; Du, G.; Li, F. A distributed method for dynamic multi-robot task allocation problems with critical time constraints. Robot. Auton. Syst. 2019, 118, 31–46. [Google Scholar] [CrossRef]
- Chen, J.; Xiao, K.; You, K.; Qing, X.; Ye, F.; Sun, Q. Hierarchical Task Assignment Strategy for Heterogeneous Multi-UAV System in Large-Scale Search and Rescue Scenarios. Int. J. Aerosp. Eng. 2021, 2021, 7353697. [Google Scholar] [CrossRef]
- Duan, X.; Liu, H.; Tang, H.; Cai, Q.; Zhang, F.; Han, X. A Novel Hybrid Auction Algorithm for Multi-UAVs Dynamic Task Assignment. IEEE Access 2020, 8, 86207–86222. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, B.; Liu, W.; Zhang, L. Hierarchical Task Assignment of Multiple UAVs with Improved Firefly Algorithm Based on Simulated Annealing Mechanism. In Proceedings of the 2021 40th Chinese Control Conference (CCC), Shanghai, China, 26–28 July 2021; pp. 1943–1948. [Google Scholar] [CrossRef]
- Chai, H. Aerial Target Grouping Method Based on Feature Similarity Clustering. Comput. Sci. 2022, 49, 70–75. [Google Scholar]
- Stanton, I.; Kliot, G. Streaming graph partitioning for large distributed graphs. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China, 12–16 August 2012; pp. 1222–1230. [Google Scholar] [CrossRef]
- Chen, J.; Guo, Y.; Qiu, Z.; Xin, B.; Jia, Q.S.; Gui, W. Multiagent Dynamic Task Assignment Based on Forest Fire Point Model. IEEE Trans. Automat. Sci. Eng. 2022, 19, 833–849. [Google Scholar] [CrossRef]
- Isaacs, R. Differential Games: A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization; Wiley: Hoboken, NJ, USA, 1965. [Google Scholar]
- Zhang, M.; Li, J.; Wang, X. Integrated Design of Cooperative Area Coverage and Target Tracking with Multi-UAV System. arXiv 2023, arXiv:2303.09003. [Google Scholar] [CrossRef]
- Chen, Q.; Xin, H.; Wang, Y.; Tang, Z.; Jia, G.; Zhu, B. A rapid path planning method for multiple UAVs to cooperative strike. J. Beijing Univ. Aeronaut. Astronaut. 2022, 48, 9. [Google Scholar]
- Yu, H.; Cao, S.; Wu, X.; Peng, Y.; Liu, J.; Wang, X. A Novel Brain-inspired Architecture and Flight Experiments for Autonomous Maneuvering Flight of Unmanned Aerial Vehicles. J. Intell. Robot. Syst. 2023, 108, 75. [Google Scholar] [CrossRef]
- Cao, S.; Wang, X.; Zhang, R.; Yu, H.; Shen, L. From Demonstration to Flight: Realization of Autonomous Aerobatic Maneuvers for Fast, Miniature Fixed-Wing UAVs. IEEE Robot. Autom. Lett. 2022, 7, 5771–5778. [Google Scholar] [CrossRef]
- Cao, S.; Yu, H. An Adaptive Control Framework for the Autonomous Aerobatic Maneuvers of Fixed-Wing Unmanned Aerial Vehicle. Drones 2022, 6, 316. [Google Scholar] [CrossRef]
Elements | Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 |
---|---|---|---|---|
Targets | 5 | 11 | 9 | 5 |
UAVs | 6 | 16 | 12 | 6 |
UAVs and Targets Distributions | Algorithm Runtime(s) | Solution Quality | ||||||
---|---|---|---|---|---|---|---|---|
UAVs vs. Targets | HTA-NFO | NFO | HA | HTA-NFO | NFO (HA) | |||
Time | Ratio | Time | Ratio | Time | Ratio | |||
20 vs. 10 | 0.1206 | 0.0776 | − | 0.1063 | − | 16.2082 | 16.9729 | 95.49% |
40 vs. 20 | 0.1213 | 0.0928 | − | 0.1374 | 11.72% | 27.0064 | 27.8442 | 96.99% |
60 vs. 30 | 0.1266 | 0.1317 | 3.84% | 0.1644 | 22.99% | 48.2495 | 52.1757 | 92.48% |
80 vs. 40 | 0.1509 | 0.2403 | 37.20% | 0.2484 | 39.25% | 62.9198 | 69.3474 | 90.73% |
100 vs. 50 | 0.1782 | 0.3626 | 50.85% | 0.3115 | 42.76% | 80.9454 | 85.1002 | 95.12% |
120 vs. 60 | 0.2151 | 0.7345 | 70.71% | 0.4078 | 47.25% | 97.4907 | 100.0242 | 97.47% |
140 vs. 70 | 0.2543 | 1.2147 | 79.06% | 0.5509 | 53.84% | 94.4199 | 96.9217 | 97.42% |
160 vs. 80 | 0.3046 | 1.5251 | 80.03% | 0.7098 | 55.32% | 142.4397 | 145.8483 | 97.66% |
180 vs. 90 | 0.4008 | 2.4752 | 83.81% | 1.0783 | 62.83% | 128.9567 | 130.4149 | 98.88% |
200 vs. 100 | 0.4946 | 3.2658 | 84.86% | 1.3920 | 64.47% | 138.4482 | 149.4052 | 92.67% |
Target ID | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|---|
UAV ID | HTA-NFO | 1, 6 | 11, 15 | 5, 17 | 7, 16 | 10, 19 | 1, 18 | 8, 20 | 9, 13 | 4, 14 | 2, 3 |
NFO (HA) | 1, 6 | 10, 11 | 5, 19 | 7, 15 | 12, 17 | 9, 20 | 8, 18 | 13, 16 | 3, 14 | 2, 4 |
UAVs and Targets Distributions | Algorithm Runtime (s) | |
---|---|---|
UAVs vs. Targets | MD Phase | TA Phase |
20 vs. 10 | 0.0544 | 0.0662 |
40 vs. 20 | 0.0545 | 0.0668 |
Models Scales | |||||||||
---|---|---|---|---|---|---|---|---|---|
Average runtime (s) | 0.4837 | 0.2561 | 0.2026 | 0.1733 | 0.2188 | 0.2194 | 0.2195 | 0.2443 | 0.2841 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Zhang, M.; Wang, X.; Zheng, Y.; Yu, H. Hierarchical Task Assignment for Multi-UAV System in Large-Scale Group-to-Group Interception Scenarios. Drones 2023, 7, 560. https://doi.org/10.3390/drones7090560
Wu X, Zhang M, Wang X, Zheng Y, Yu H. Hierarchical Task Assignment for Multi-UAV System in Large-Scale Group-to-Group Interception Scenarios. Drones. 2023; 7(9):560. https://doi.org/10.3390/drones7090560
Chicago/Turabian StyleWu, Xinning, Mengge Zhang, Xiangke Wang, Yongbin Zheng, and Huangchao Yu. 2023. "Hierarchical Task Assignment for Multi-UAV System in Large-Scale Group-to-Group Interception Scenarios" Drones 7, no. 9: 560. https://doi.org/10.3390/drones7090560
APA StyleWu, X., Zhang, M., Wang, X., Zheng, Y., & Yu, H. (2023). Hierarchical Task Assignment for Multi-UAV System in Large-Scale Group-to-Group Interception Scenarios. Drones, 7(9), 560. https://doi.org/10.3390/drones7090560