Contributions to Image Transmission in Icing Conditions on Unmanned Aerial Vehicles
Abstract
:1. Introduction
1.1. Objective
- Define when aircraft icing is likely to occur.
- Develop a model to classify parameters into groups according to their importance for the prediction and sensing of ice formation.
- Analyse initial conditions, taking into consideration bandwidth limits and the equipment used.
- Define various models based on theoretical estimates that enable to improve the initial capabilities.
1.2. Justification
1.3. Limitations
1.4. Initial Considerations
- and are SYNC words used for synchronization of the incoming data with the receiver.
- From to (column 7) are SFID words used to identify each subframe.
- From to are measured data:
- -
- and are supercommutated words and signal is sampled multiple times per minor frame.
- -
- , and are commutated words and signal is sampled once per minor frame.
- -
- From to are subcommutated words and signal is sampled less than once per minor frame.
2. Contributions
2.1. First Contribution
2.2. Second Contribution
2.3. Third Contribution
3. Results
3.1. First Contribution
3.2. Second Contribution
3.3. Third Contribution
4. Discussion
5. Future Research Lines
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ALO | Avión Ligero de Observación |
ADS | Air Data System |
AFM | Aircraft Flight Manual |
AI | Artificial Intelligent |
CAPS | Cloud Aerosol and Precipitation Spectrometer |
CFD | Computational Fluid Dynamics |
DAS | Data Acquisition System |
FTI | Flight Test Instrumentation |
GCS | Ground Control Station |
GPS | Global Positioning System |
IMU | Inertial Measurement Unit |
INTA | Instituto Nacional de Técnica Aeroespacial |
IRIG | Inter-Range Instrumentation Group |
LSB | Least Significant Bit |
LWC | Liquid Water Content |
MVD | Median Volumetric Diameter |
PCASP | Passive Cavity Aerosol Spectrometer Probe |
PCM | Pulse Code Modulation |
PL | Payload |
R&D | Research and Development |
RC | Radio Control |
RF | Radio Frequency |
RM | Radio-modem |
RS-232 | Recommended Standard 232 |
SFID | Subframe Identifier |
SIVA | Sistema Integrado de Vigilancia Aérea |
SYNC | Subframe Sincronization |
TC | Telecommand |
TM | Telemetry |
TAT | Total air temperature |
UAV | Unmanned Aerial Vehicle |
UAS | Unmanned Aerial System |
References
- Vidal, I.; Sanchez-Aguero, V.; Valera, F.; Nogales, B.; Cabezas, J.; Vidal, C.; López, A.; González, D.; Díez, J.; Berrazueta, L.; et al. Milano: Una visión futura para un UAS táctico. VI Congreso Nacional de I+D en Defensa y Seguridad. 2018. Available online: https://e-archivo.uc3m.es/handle/10016/28959 (accessed on 30 August 2023).
- NATO STANAG 4670. Recommended Guidance for the Training of Designated Unmanned Aerial Vehicle Operator (DUO), 1st ed.; NATO Standardization Agency: Brussels, Belgium, 2006.
- NATO STANAG 4670 —ATP-3.3.7. Guidance for the Training of Unmanned Aircraft Systems (UAS) Operators, 3rd ed.; NATO Standardization Agency: Brussels, Belgium, 2014; Available online: http://everyspec.com/NATO/NATO-STANAG/SRANAG-4670_ED-3_52054/ (accessed on 30 August 2023).
- Berger, J.; Barkaoui, M.; Boukhtouta, A. A hybrid genetic approach for airborne sensor vehicle routing in real-time reconnaissance missions. Aerosp. Sci. Technol. 2007, 11, 317–326. [Google Scholar] [CrossRef]
- El-Salamony, M.; Aziz, M.A. Solar Panel Effect on Low-Speed Airfoil Aerodynamic Performance. Unmanned Syst. 2021, 9, 333–347. [Google Scholar] [CrossRef]
- Skorobogatov, G.; Barrado, C.; Salamí, E. Multiple UAV Systems: A Survey. Unmanned Syst. 2020, 8, 149–169. [Google Scholar] [CrossRef]
- Strock, O.J. Telemetry Computer Systems: The New Generation; Instrument Society of America: Pittsburgh, PA, USA, 1988. [Google Scholar]
- Dantsker, O.D.; Mancuso, R.; Selig, M.S.; Caccamo, M. High-Frequency Sensor Data Acquisition System (SDAC) for Flight Control and Aerodynamic Data Collection. In Proceedings of the 32nd AIAA Applied Aerodynamics Conference, Session: Aerodynamic Testing: Flight, Wind Tunnel and Numerical Correlations III, Atlanta, GA, USA, 16–20 June 2014. [Google Scholar] [CrossRef]
- Khoshnoud, F.; Esat, I.I.; De Silva, C.W.; Rhodes, J.D.; Kiessling, A.A.; Quadrelli, M.B. Self-Powered Solar Aerial Vehicles: Towards Infinite Endurance UAVs. Unmanned Syst. 2020, 8, 95–117. [Google Scholar] [CrossRef]
- Romero, S.F.; Rodríguez, P.L.; Bocanegra, D.E.; Martínez, D.P.; Cancela, M.A. Comparing Open Area Test Site and Resonant Chamber for Unmanned Aerial Vehicles’s High-Intensity Radiated Field Testing. IEEE Trans. Electromagn. Compat. 2018, 60, 1704–1711. [Google Scholar] [CrossRef]
- Jeck, R.K. Other ways to characterize the icing atmosphere. In Proceedings of the 32nd Aerospace Sciences Meeting & Exhibit, Reno, NV, USA, 10–13 January 1994. [Google Scholar] [CrossRef]
- Mingione, G.; Barocco, M.; Denti, E.; Bindi, F.G. Flight in Icing Conditions Summary. On behalf of: French DGAC. 2006. Available online: https://www.ecologie.gouv.fr/sites/default/files/Icing_flight_manual.pdf (accessed on 30 August 2023).
- Meyrowitz, A.L.; Blidberg, D.R.; Michelson, R.C. Autonomous Vehicles; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 1996; Volume 84, pp. 1147–1164. [Google Scholar] [CrossRef]
- Matthew, U.O.; Kazaure, J.S.; Amaonwu, O.; Daniel, O.O.; Muhammed, I.H.; Okafor, N.U. Artificial Intelligence Autonomous Unmanned Aerial Vehicle (UAV) System for Remote Sensing in Security Surveillance. In Proceedings of the 2020 IEEE 2nd International Conference on Cyberspac (CYBER NIGERIA), Abuja, Nigeria, 23–25 February 2021. [Google Scholar] [CrossRef]
- Li, S.; Qin, J.; He, M.; Paoli, R. Fast Evaluation of Aircraft Icing Severity Using Machine Learning Based on XGBoost. Aerospace 2020, 7, 36. Available online: https://www.mdpi.com/2226-4310/7/4/36 (accessed on 30 August 2023). [CrossRef]
- Zhou, C.; Li, Y.; Zheng, W.; Wu, P.; Dong, Z. Safety Analysis for Icing during Landing Phase Based on Reachability Anaysis. Math. Probl. Eng. 2018. [Google Scholar] [CrossRef]
- Yamazaki, M.; Jemcov, A.; Sakaue, H. A Review on the Current Status of Icing Physics and Mitigation in Aviation. Aerospace 2021, 8, 188. [Google Scholar] [CrossRef]
- European General Aviation Safety Team. In Flight Icing; European Union Aviation Safety Agency (EASA): Cologne, Germany, 2015. Available online: https://www.easa.europa.eu/downloads/24118/en (accessed on 30 August 2023).
- Cao, Y.; Tan, W.; Wu, Z. Aircraft icing: An ongoing threat to aviation safety. Aerosp. Sci. Technol. 2018, 75, 353–385. [Google Scholar] [CrossRef]
- Boubeta-Puig, J.; Moguel, E.; Sánchez-Figueroa, F.; Hernández, J.; Preciado, J.C. An Autonomous UAV Architecture for Remote Sensing and Intelligent Decision-making. IEEE Internet Comput. 2018, 22, 6–15. [Google Scholar] [CrossRef]
- Kang, K.; Prasad, J.V.R. Development and Flight Test Evaluations of an Autonomous Obstacle Avoidance System for a Rotatory-Wing UAV. Unmanned Syst. 2013, 1, 3–19. [Google Scholar] [CrossRef]
- Darrah, M.; Wilhelm, J.; Munasinghe, T.; Duling, K.; Yokum, S.; Sorton, E.; Rojas, J.; Wathen, M. A Flexible Genetic Algorithm System for Multi-UAVs Surveillance: Algorithm and Flight Testing. Unmanned Syst. 2015, 3, 49–62. [Google Scholar] [CrossRef]
- Huo, M.; Duan, H.; Ding, X. Manned Aircraft and Unmanned Aerial Vehicle Heterogeneous Formation Flight Control via Heterogeneous Pigeon Flock Consistency. Unmanned Syst. 2021, 39, 227–236. [Google Scholar] [CrossRef]
- Federal Aviation Requirements—Part 25: Airworthiness Standards: Transport Category Airplanes, USA. Federal Aviation Administration (FAA). Available online: https://www.law.cornell.edu/cfr/text/14/part-25 (accessed on 30 August 2023).
- Kohlman, D.L.; Sand, W. Aircraft ICING: Meteorology, Protective Systems, Instrumentation and Certification; The University of Kansas: Lawrence, KS, USA, 1996. [Google Scholar]
- Rodríguez, J.E.; Segurado, D.; Sánchez, M.; Martínez, J.J.; González, R. Contributions to data transmission at critical moments on unmanned aerial vehicles. Chin. J. Aeronaut. 2023, 36, 247–257. [Google Scholar] [CrossRef]
- Szabolcsi, R. UAV Operator Training—Beyond Minimum Standards. In Proceedings of the Scientific Research and Education in the Air Force: AFASES; 2016. Available online: https://www.afahc.ro/ro/afases/2016/RP/SZABOLCSI.pdf (accessed on 30 August 2023).
- Stevenson, J.D.; O’Young, S.; Rolland, L. Beyond Line of Sight Control of Small Unmanned Aerial Vehicles Using a Synthetic Environment to Augment First Person Video. Procedia Manuf. 2015, 3, 960–967. [Google Scholar] [CrossRef]
- Agrawal, P.; Prabhu, D.; Chen, Y. Development of an Integrated Data Acquisition System for a Small Flight Probe. In Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, TN, USA, 9–12 January 2012; pp. 1–7. [Google Scholar] [CrossRef]
- Smiljakovic, V.; Golubicic, Z.; Simic, D.; Obradovik, D.; Dragas, S.; Mikavica, M. Telemetry System of Light Unmanned Aerial Vehicle “Raven”. In Proceedings of the 4th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services, Nis, Yugoslavia, 13–15 October 1999. TELSIKS’99 (Cat. No.99EX365). [Google Scholar] [CrossRef]
- Recommended Standard EIA/TIA-232-F: Interface Between Data Terminal Equipment and Data Circuit: Termination Equipment Employing Serial Binary Data Interchange; Telecommunications Industry Association & Electronic Industries Alliance: Arlington, VA, USA, 1997.
- Zhao, L.; Wang, D.; Huang, B.; Xie, L. Distributed Filtering-Based Autonomous Navigation System of UAV. Unmanned Syst. 2015, 3, 17–34. [Google Scholar] [CrossRef]
- Weigel, R.; Spichtinger, P.; Mahnke, C.; Klingebiel, M. Thermodynamic correction of particle concentrations measured by underwing probes on fast flying aircraft. Atmos. Meas. Tech. 2016, 9, 5135–5162. [Google Scholar] [CrossRef]
- Cloud, Aerosol, and Precipitation Spectrometer with Depolarization (CAPS-DPOL). Specifications. Droplet Measurement Technologies. Available online: https://www.dropletmeasurement.com/product/cloud-aerosol-and-precipitation-spectrometer-with-depolarization/ (accessed on 30 August 2023).
- Passive Cavity Aerosol Spectrometer Probe (PCASP-100X). Droplet Measurement Technologies. Available online: https://www.dropletmeasurement.com/product/passive-cavity-aerosol-spectrometer-probe/ (accessed on 30 August 2023).
- IEEE Standard for Floating-Point Arithmetic (IEEE 754); Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2019. [CrossRef]
- Inter-Range Instrumentation Group. Telemetry Applications Handbook; Online Publications and Standards; Inter-Range Instrumentation Group: Army White Sands Missile Range, NM, USA, 2006; Volume 119, Available online: https://apps.dtic.mil/sti/pdfs/AD1038198.pdf (accessed on 30 August 2023).
- García-Magariño, A. Water Droplet Deformation and Breakup in the Vicinity of the Leading Edge of an Incoming Airfoil. Ph.D. Thesis, Universidad Politćnica de Madrid, Madrid, Spain, 2016. Available online: https://oa.upm.es/44231/1/ADELAIDA_GARCIA_MAGARINO_GARCIA.pdf (accessed on 30 August 2023).
- Politovich, M.K.; McDonough, F.; Bernstein, B.C. Issues in Forecasting Icing Severity. In Proceedings of the 10th Conference on Aviation, Range, and Aerospace Meteorology, National Center for Atmospheric Research. Portland, OR, USA, 13–16 May 2002; Available online: https://ams.confex.com/ams/13ac10av/techprogram/paper_39172.htm (accessed on 30 August 2023).
- Politovich, M.K. Aircraft Icing; National Center for Atmospheric Research: Boulder, CO, USA, 2003; Available online: https://curry.eas.gatech.edu/Courses/6140/ency/Chapter5/Ency_Atmos/Aircraft_Icing.pdf (accessed on 30 August 2023).
- Bever, G.A. Digital Signal Conditioning for Flight Test; AGARD-AG-160; Volume 19. 1991. Available online: https://apps.dtic.mil/sti/pdfs/ADA240140.pdf (accessed on 30 August 2023).
- Inter-Range Instrumentation Group. Telemetry Standard; Online Publications and Standards; Inter-Range Instrumentation Group: Army White Sands Missile Range, NM, USA, 2006; Volume 106, Available online: http://www.irig106.org/docs/106-19/106-19_Telemetry_Standards.pdf (accessed on 30 August 2023).
- Aerospace Telemetry (IRIG 106 PCM & CHAPTER 10 intro). Dewesoft. Available online: https://training.dewesoft.com/online/course/telemetry (accessed on 30 August 2023).
- Harney, P.F. Diversity Techniques for Omnidirectional Telemetry Coverage of the HiMAT Research Vehicle; National Aeronautics and Space Administration (NASA): Washington, DC, USA, 1981. Available online: https://www.nasa.gov/centers/dryden/pdf/87940main_H-1133.pdf (accessed on 30 August 2023).
- Utray, F. Postproducción Digital. Una Perspectiva Contemporánea, 1st ed.; Capítulo 5: Codificación Digital de la Imagen; Dykinson: Madrid, Spain, 2015. [Google Scholar]
- Osman, B.; Yasin, A.; Omar, M. An analysis of alphabet-based techniques in text steganography. J. Telecommun. Electron. Comput. Eng. 2016, 8, 109–115. Available online: https://repo.uum.edu.my/id/eprint/20540/ (accessed on 30 August 2023).
- Nosrati, M.; Karimi, R.; Hariri, M. An introduction to steganography methods. World Appl. Program. 2011, 1, 191–195. Available online: https://www.researchgate.net/publication/308646775_An_introduction_to_steganography_methods (accessed on 30 August 2023).
- Sumathi, C.P.; Santanam, T.; Umamaheswari, G. A study of Various Steganographic Techniques Used for Information Hiding. Int. J. Comput. Sci. Eng. Surv. (IJCSES) 2013, 4. Available online: https://arxiv.org/ftp/arxiv/papers/1401/1401.5561.pdf (accessed on 30 August 2023).
- Krenn, J.R. Steganography and Steganalysis. 2004. Available online: http://www.krenn.nl/univ/cry/steg/article.pdf (accessed on 30 August 2023).
- Morkel, T.; Eloff, J.H.P.; Olivier, M.S. An Overview of Image Steganography; Information and Computer Security Architecture (ICSA) Research Group. 2005. Available online: https://www.researchgate.net/publication/220803240_An_overview_of_image_steganography (accessed on 30 August 2023).
- Wang, H.; Wang, S. Cyber warfare: Steganography vs. Steganalysis. Commun. ACM 2004, 47, 76–82. Available online: https://www.researchgate.net/publication/220427158_Cyber_warfare_steganography_vs_steganalysis (accessed on 30 August 2023). [CrossRef]
- Anderson, R.J.; Petitcolas, F.A.P. On the limits of steganography. IEEE J. Sel. Areas Commun. 1998, 16, 474–481. Available online: https://www.cl.cam.ac.uk/~rja14/Papers/jsac98-limsteg.pdf (accessed on 30 August 2023). [CrossRef]
Wingspan | 12.5 m |
Total length | 8.5 m |
Height | 2.3 m |
Empty weight | 700 kg |
Maximum payload | 150 kg |
Maximum take-off weight | 950 kg |
Cruise speed | 162 km/h (87 kts) |
Maximum operating speed | 230 km/h (124 kts) |
Operational ceiling | 7500 m |
Scope | 2000 km |
Endurance | 20 h |
Bit Depth | Color Tones |
---|---|
8 | 256 |
12 | 4096 |
16 | 65,536 |
24 | 16,777,216 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez Marco, J.E.; Sánchez Rubio, M.; Martínez Herráiz, J.J.; González Armengod, R.; Del Pino, J.C.P. Contributions to Image Transmission in Icing Conditions on Unmanned Aerial Vehicles. Drones 2023, 7, 571. https://doi.org/10.3390/drones7090571
Rodríguez Marco JE, Sánchez Rubio M, Martínez Herráiz JJ, González Armengod R, Del Pino JCP. Contributions to Image Transmission in Icing Conditions on Unmanned Aerial Vehicles. Drones. 2023; 7(9):571. https://doi.org/10.3390/drones7090571
Chicago/Turabian StyleRodríguez Marco, José Enrique, Manuel Sánchez Rubio, José Javier Martínez Herráiz, Rafael González Armengod, and Juan Carlos Plaza Del Pino. 2023. "Contributions to Image Transmission in Icing Conditions on Unmanned Aerial Vehicles" Drones 7, no. 9: 571. https://doi.org/10.3390/drones7090571
APA StyleRodríguez Marco, J. E., Sánchez Rubio, M., Martínez Herráiz, J. J., González Armengod, R., & Del Pino, J. C. P. (2023). Contributions to Image Transmission in Icing Conditions on Unmanned Aerial Vehicles. Drones, 7(9), 571. https://doi.org/10.3390/drones7090571