Research on Key Technology of Ship Re-Identification Based on the USV-UAV Collaboration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Datasets
- Contain multiple image samples under the same ID label.
- Include the same ID label images captured from multiple views.
- Each image sample should feature a complete ship target.
- Image samples of the ship target should maintain similar main features.
- Query images should involve as many angles of the ship target as possible.
2.1.1. Dataset Collection
2.1.2. Dataset Processing
2.2. Fine-Grained Feature Network Design
2.2.1. Non-Local Module
2.2.2. GeM Pooling
2.2.3. Multi-Task Loss Function
- Classification loss
- 2.
- Metric Loss
2.2.4. Evaluation Metric for ReID
2.3. Multi-View Ranking Optimization Based on the USV-UAV Collaboration
3. Results
3.1. Implementation Details
3.2. Comparison with the State-of-the-Art and Ablation Experiment
3.3. Generalization Performance
3.4. Background Noise
3.5. Homologous and Heterologous Multi-View Fusion Retrieval Ranking Performance
3.6. Fusion Time Consumption
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.; Ni, G.; Xu, Y. Trajectory prediction based on AIS and BP neural network. In Proceedings of the 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China, 11–13 December 2020; pp. 601–605. [Google Scholar]
- Zhao, L.; Yang, J.; Shi, G. A Correction Method for Time of Ship Trajectories Based on AIS. In Proceedings of the 1st International Conference on Big Data Research, Osaka, Japan, 22–24 October 2017; pp. 83–88. [Google Scholar]
- Zheng, Z.; Zheng, L.; Yang, Y. A discriminatively learned CNN embedding for person reidentification. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 2017, 14, 1–20. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.; Tian, Q.; Gao, W.; Zhang, S. Global-local temporal representations for video person re-identification. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 3958–3967. [Google Scholar]
- Wang, Y.; Peng, J.; Wang, H.; Wang, M. Progressive learning with multi-scale attention network for cross-domain vehicle re-identification. Sci. China Inf. Sci. 2022, 65, 160103. [Google Scholar] [CrossRef]
- Lian, J.; Wang, D.; Zhu, S.; Wu, Y.; Li, C. Transformer-based attention network for vehicle re-identification. Electronics 2022, 11, 1016. [Google Scholar] [CrossRef]
- Zheng, L.; Zhang, H.; Sun, S.; Chandraker, M.; Yang, Y.; Tian, Q. Person re-identification in the wild. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1367–1376. [Google Scholar]
- Suh, Y.; Wang, J.; Tang, S.; Mei, T.; Lee, K.M. Part-aligned bilinear representations for person re-identification. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 402–419. [Google Scholar]
- Sun, Y.; Zheng, L.; Yang, Y.; Tian, Q.; Wang, S. Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline). In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 480–496. [Google Scholar]
- Farenzena, M.; Bazzani, L.; Perina, A.; Murino, V.; Cristani, M. Person re-identification by symmetry-driven accumulation of local features. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 2360–2367. [Google Scholar]
- Lin, Y.; Zheng, L.; Zheng, Z.; Wu, Y.; Hu, Z.; Yan, C.; Yang, Y. Improving person re-identification by attribute and identity learning. Pattern Recognit. 2019, 95, 151–161. [Google Scholar] [CrossRef]
- Matsukawa, T.; Suzuki, E. Person re-identification using CNN features learned from combination of attributes. In Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4–8 December 2016; pp. 2428–2433. [Google Scholar]
- Zheng, Z.; Zheng, L.; Yang, Y. Unlabeled samples generated by gan improve the person re-identification baseline in vitro. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 3754–3762. [Google Scholar]
- Sun, Y.; Zheng, L.; Deng, W.; Wang, S. Svdnet for pedestrian retrieval. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 3800–3808. [Google Scholar]
- Chen, D.; Xu, D.; Li, H.; Sebe, N.; Wang, X. Group consistent similarity learning via deep crf for person re-identification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8649–8658. [Google Scholar]
- Wang, Y.; Wang, L.; You, Y.; Zou, X.; Chen, V.; Li, S.; Huang, G.; Hariharan, B.; Weinberger, K.Q. Resource aware person re-identification across multiple resolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8042–8051. [Google Scholar]
- Song, C.; Huang, Y.; Ouyang, W.; Wang, L. Mask-guided contrastive attention model for person re-identification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 1179–1188. [Google Scholar]
- Hermans, A.; Beyer, L.; Leibe, B. In defense of the triplet loss for person re-identification. arXiv 2017, arXiv:1703.07737. [Google Scholar]
- Varior, R.R.; Shuai, B.; Lu, J.; Xu, D.; Wang, G. A siamese long short-term memory architecture for human re-identification. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; pp. 135–153. [Google Scholar]
- Ye, M.; Liang, C.; Wang, Z.; Leng, Q.; Chen, J. Ranking optimization for person re-identification via similarity and dissimilarity. In Proceedings of the 23rd ACM International Conference on Multimedia, Brisbane, Australia, 26–30 October 2015; pp. 1239–1242. [Google Scholar]
- Zhong, Z.; Zheng, L.; Cao, D.; Li, S. Re-ranking person re-identification with k-reciprocal encoding. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1318–1327. [Google Scholar]
- Zeng, G.; Wang, R.; Yu, W.; Lin, A.; Li, H.; Shang, Y. A transfer learning-based approach to maritime warships re-identification. Eng. Appl. Artif. Intell. 2023, 125, 106696. [Google Scholar] [CrossRef]
- Qiao, D.; Liu, G.; Dong, F.; Jiang, S.-X.; Dai, L. Marine vessel re-identification: A large-scale dataset and global-and-local fusion-based discriminative feature learning. IEEE Access 2020, 8, 27744–27756. [Google Scholar] [CrossRef]
- Ghahremani, A.; Alkanat, T.; Bondarev, E.; de With, P.H. Maritime vessel re-identification: Novel VR-VCA dataset and a multi-branch architecture MVR-net. Mach. Vis. Appl. 2021, 32, 1–14. [Google Scholar] [CrossRef]
- Groot, H.G.; Zwemer, M.H.; Wijnhoven, R.G.; Bondarau, E. Vessel-speed enforcement system by multi-camera detection and re-identification. In Proceedings of the 15th International Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISAPP2020), Valetta, Malta, 27–29 February 2020; pp. 268–277. [Google Scholar]
- Ribeiro, R.; Cruz, G.; Matos, J.; Bernardino, A. A data set for airborne maritime surveillance environments. IEEE Trans. Circuits Syst. Video Technol. 2017, 29, 2720–2732. [Google Scholar] [CrossRef]
- Ghahremani, A.; Kong, Y.; Bondarev, E.; de With, P.H. Towards parameter-optimized vessel re-identification based on IORnet. In Proceedings of the Computational Science–ICCS 2019: 19th International Conference, Faro, Portugal, 12–14 June 2019; pp. 125–136. [Google Scholar]
- Li, W.; Ge, Y.; Guan, Z.; Ye, G. Synchronized Motion-Based UAV–USV Cooperative Autonomous Landing. J. Mar. Sci. Eng. 2022, 10, 1214. [Google Scholar] [CrossRef]
- Shao, G.; Ma, Y.; Malekian, R.; Yan, X.; Li, Z. A novel cooperative platform design for coupled USV–UAV systems. IEEE Trans. Ind. Inform. 2019, 15, 4913–4922. [Google Scholar] [CrossRef]
- Huang, T.; Chen, Z.; Gao, W.; Xue, Z.; Liu, Y. A USV-UAV Cooperative Trajectory Planning Algorithm with Hull Dynamic Constraints. Sensors 2023, 23, 1845. [Google Scholar] [CrossRef]
- Li, W.; Ge, Y.; Guan, Z.; Gao, H.; Feng, H. NMPC-based UAV-USV cooperative tracking and landing. J. Frankl. Inst. 2023, 360, 7481–7500. [Google Scholar] [CrossRef]
- Yao, P.; Gao, Z. UAV/USV Cooperative Trajectory Optimization Based on Reinforcement Learning. In Proceedings of the 2022 China Automation Congress (CAC), Xiamen, China, 25–27 November 2022; pp. 4711–4715. [Google Scholar]
- Wei, W.; Wang, J.; Fang, Z.; Chen, J.; Ren, Y.; Dong, Y. 3U: Joint design of UAV-USV-UUV networks for cooperative target hunting. IEEE Trans. Veh. Technol. 2022, 72, 4085–4090. [Google Scholar] [CrossRef]
- Lewicka, O.; Specht, M.; Stateczny, A.; Specht, C.; Dardanelli, G.; Brčić, D.; Szostak, B.; Halicki, A.; Stateczny, M.; Widźgowski, S. Integration data model of the bathymetric monitoring system for shallow waterbodies using UAV and USV platforms. Remote Sens. 2022, 14, 4075. [Google Scholar] [CrossRef]
- Han, Y.; Ma, W. Automatic Monitoring of Water Pollution based on the Combination of UAV and USV. In Proceedings of the 2021 IEEE 4th International Conference on Electronic Information and Communication Technology (ICEICT), Xi’an, China, 18–20 August 2021; pp. 420–424. [Google Scholar]
- Wang, Y.; Liu, W.; Liu, J.; Sun, C. Cooperative USV–UAV marine search and rescue with visual navigation and reinforcement learning-based control. ISA Trans. 2023, 137, 222–235. [Google Scholar] [CrossRef]
- Wu, J.; Li, R.; Li, J.; Zou, M.; Huang, Z. Cooperative unmanned surface vehicles and unmanned aerial vehicles platform as a tool for coastal monitoring activities. Ocean. Coast. Manag. 2023, 232, 106421. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.; Zhang, Y.; Zhang, W.; Lu, H. Dynamic Route Planning for a USV-UAV Multi-Robot System in the Rendezvous Task with Obstacles. J. Intell. Robot. Syst. 2023, 107, 52. [Google Scholar] [CrossRef]
- Yu, Y.; Rodríguez-Piñeiro, J.; Shunqin, X.; Tong, Y.; Zhang, J.; Yin, X. Measurement-based propagation channel modeling for communication between a UAV and a USV. In Proceedings of the 2022 16th European Conference on Antennas and Propagation (EuCAP), Madrid, Spain, 27 March–1 April 2022; pp. 01–05. [Google Scholar]
- Shao, Z.; Wu, W.; Wang, Z.; Du, W.; Li, C. Seaships: A large-scale precisely annotated dataset for ship detection. IEEE Trans. Multimed. 2018, 20, 2593–2604. [Google Scholar] [CrossRef]
- Prasad, D.K.; Rajan, D.; Rachmawati, L.; Rajabally, E.; Quek, C. Video processing from electro-optical sensors for object detection and tracking in a maritime environment: A survey. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1993–2016. [Google Scholar] [CrossRef]
- ShipSpotting. Available online: www.shipspotting.com (accessed on 19 July 2023).
- Naderializadeh, N.; Orhan, O.; Nikopour, H.; Talwar, S. Ultra-dense networks in 5G: Interference management via non-orthogonal multiple access and treating interference as noise. In Proceedings of the 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, ON, Canada, 24–27 September 2017; pp. 1–6. [Google Scholar]
- Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A k-means clustering algorithm. J. R. Stat. Society. Ser. C (Appl. Stat.) 1979, 28, 100–108. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-local neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7794–7803. [Google Scholar]
- Radenović, F.; Tolias, G.; Chum, O. Fine-tuning CNN image retrieval with no human annotation. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 41, 1655–1668. [Google Scholar] [CrossRef]
- Schroff, F.; Kalenichenko, D.; Philbin, J. Facenet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 815–823. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 5998–6008. [Google Scholar]
- Zhu, X.; Cheng, D.; Zhang, Z.; Lin, S.; Dai, J. An empirical study of spatial attention mechanisms in deep networks. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 6688–6697. [Google Scholar]
- Gu, Y.; Li, C.; Xie, J. Attention-aware generalized mean pooling for image retrieval. arXiv 2018, arXiv:1811.00202. [Google Scholar]
- Zheng, L.; Shen, L.; Tian, L.; Wang, S.; Wang, J.; Tian, Q. Scalable person re-identification: A benchmark. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1116–1124. [Google Scholar]
- Liu, X.; Liu, W.; Ma, H.; Fu, H. Large-scale vehicle re-identification in urban surveillance videos. In Proceedings of the 2016 IEEE International Conference on Multimedia and Expo (ICME), Seattle, WA, USA, 11–15 July 2016; pp. 1–6. [Google Scholar]
- Teng, S.; Zhang, S.; Huang, Q.; Sebe, N. Viewpoint and scale consistency reinforcement for UAV vehicle re-identification. Int. J. Comput. Vis. 2021, 129, 719–735. [Google Scholar] [CrossRef]
- Sun, Y.; Cheng, C.; Zhang, Y.; Zhang, C.; Zheng, L.; Wang, Z.; Wei, Y. Circle loss: A unified perspective of pair similarity optimization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 6398–6407. [Google Scholar]
- Chen, H.; Lagadec, B.; Bremond, F. Partition and reunion: A two-branch neural network for vehicle re-identification. In Proceedings of the CVPR Workshops, Long Beach, CA, USA, 16–20 June 2019; pp. 184–192. [Google Scholar]
- Zhang, X.; Zhang, R.; Cao, J.; Gong, D.; You, M.; Shen, C. Part-guided attention learning for vehicle instance retrieval. IEEE Trans. Intell. Transp. Syst. 2020, 23, 3048–3060. [Google Scholar] [CrossRef]
Class 1 | Class 2 | Class 3 | Class 4 | Class 5 |
---|---|---|---|---|
Dataset | Target | ID Volume | Dataset Scale | Angle of View |
---|---|---|---|---|
VesselID-700 | Vessel | 700 | 56,069 | Five angle types with random multi-angle |
VesselReID | Vessel | 733 | 4616 | Random multi-angle |
Market-1501 | Person | 1501 | 32,643 | Six fixed angles |
VeRI-776 | Vehicle | 776 | 51,035 | Sixteen fixed angles |
UAV-VeID | Vehicle | 4601 | 58,767 | Random multi-angle |
Method | Loss Type | Rank-1 (%) | mAP (%) |
---|---|---|---|
Baseline: ResNet50 | CE | 83.10 | 42.33 |
IORNet [27] | CE + Triplet | 85.76 | 56.63 |
Base-GLF-MVFL [23] | CE + TriHard | 84.14 | 48.78 |
GLF-MVFL [23] | CE + O-Quin | 88.72 | 62.19 |
ResNet50 | CE + Triplet | 86.57 | 58.60 |
ResNet50 | CE + TriHard | 87.09 | 60.35 |
ResNet50 + Non-local | CE + TriHard | 88.99 | 64.36 |
ResNet50 + GeM Pooling | CE + TriHard | 89.05 | 64.09 |
FGFN (ResNet50 + Non-local + GeM Pooling) | CE + TriHard | 89.78 | 65.72 |
Target | Dataset | Model | Rank-1 (%) | mAP (%) |
---|---|---|---|---|
Pedestrian | Market1501 | FGFN | 95.3 | 87.9 |
Circle Loss [57] | 96.1 | 87.4 | ||
Vehicle | VeRI-776 | FGFN | 96.0 | 78.3 |
PRN [58] | 94.3 | 74.3 | ||
PGAN [59] | 96.5 | 79.3 | ||
UAV-VeID | FGFN | 80.0 | 85.6 | |
VSCR [56] | 70.6 | -- |
Bounding Box Labeling | Rank-1 (%) | mAP (%) |
---|---|---|
False | 79.01 | 33.80 |
True | 83.10 | 42.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dou, W.; Zhu, L.; Wang, Y.; Wang, S. Research on Key Technology of Ship Re-Identification Based on the USV-UAV Collaboration. Drones 2023, 7, 590. https://doi.org/10.3390/drones7090590
Dou W, Zhu L, Wang Y, Wang S. Research on Key Technology of Ship Re-Identification Based on the USV-UAV Collaboration. Drones. 2023; 7(9):590. https://doi.org/10.3390/drones7090590
Chicago/Turabian StyleDou, Wenhao, Leiming Zhu, Yang Wang, and Shubo Wang. 2023. "Research on Key Technology of Ship Re-Identification Based on the USV-UAV Collaboration" Drones 7, no. 9: 590. https://doi.org/10.3390/drones7090590
APA StyleDou, W., Zhu, L., Wang, Y., & Wang, S. (2023). Research on Key Technology of Ship Re-Identification Based on the USV-UAV Collaboration. Drones, 7(9), 590. https://doi.org/10.3390/drones7090590