Impact of Variable Device Structural Changes on Particle Deposition Distribution in Multi-Rotor UAV
Abstract
:1. Introduction
2. Materials and Methods
2.1. Equipment
2.2. Work Principles
2.3. Experiment Design
2.4. Data Processing and Analysis
3. Results
3.1. Spreading Deposition Quality
3.2. Effective Width of Deposition
4. Discussion
4.1. The Effect of Rotor Wind Fields on Sediment Distribution
4.2. Multifactorial Effects on Sediment Distribution
4.3. Variable Regulation and Particulate Deposition Characterisation
5. Conclusions
- (1)
- The particulate deposition data indicates that the fertilizer deposition varies with different variable combinations of the broadcasting device. Among the 27 variable combinations, the b1b2b3 group exhibited the deposition, with three-quarters of the particulate deposition values being 3 g/m2 and the maximum value reaching 4 g/m2.
- (2)
- Under relatively uniform distribution of fertilizer particles, the b1b2b3 group had a large coefficient of variation difference (36.5%), with the coefficient of variation ranging from 4.5% to 41%.
- (3)
- Under different group adjustments, the particle distribution shows the smallest variability range in group b1b2b3, with a range of 15.71–26.44% and a variability difference of 10.73%. The particle distribution shows the largest variability range in group a1a2b3, with a range of 0.78–35.06% and a variability difference of 34.28%.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lan, Y.; Chen, S.; Deng, J.; Zhou, Z.; Ou, Y. Development situation and problem analysis of plant protection unmanned aerial vehicle in China. J. South China Agric. Univ. 2019, 40, 217–225. [Google Scholar]
- Wang, G.; Han, Y.; Li, X.; Andaloro, J.; Chen, P.; Hoffmann, W.; Han, X.; Chen, S.; Lan, Y. Field evaluation of spray drift and environmental impact using an agricultural unmanned aerial vehicle (UAV) sprayer. Sci. Total Environ. 2020, 737, 139793. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Liu, L.; Wang, G.; Han, J.; Zhang, T.; Lan, Y. Particle Deposition Distribution of Multi-Rotor UAV-Based Fertilizer Spreader under Different Height and Speed Parameters. Drones 2023, 7, 425. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, Z.; Chen, B.; Zhong, J.; Fan, X.; Andrew, H. Distribution uniformity improvement methods of a large discharge rate disc spreader for UAV fertilizer application. Comput. Electron. Agric. 2024, 220, 108928. [Google Scholar]
- Liu, W.; Zhou, Z.; Xu, X.; Gu, Q.; Zou, S.; He, W.; Luo, X.; Huang, J.; Lin, J.; Jiang, R. Evaluation method of rowing performance and its optimization for UAV-based shot seeding device on rice sowing. Comput. Electron. Agric. 2023, 207, 107718. [Google Scholar] [CrossRef]
- Song, C.C.; Wang, G.B.; Zhao, J.; Wang, J.H.; Wang, M.; Zhou, Z.Y.; Lan, Y.B. Research progress on the particle deposition and distribution characteristics of granular fertilizer application. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2022, 38, 59–70. (In Chinese) [Google Scholar]
- Song, C.C.; Zhou, Z.Y.; Jiang, R.; Luo, X.W.; He, X.G.; Ming, R. Design and parameter optimization of pneumatic rice sowing device for unmanned aerial vehicle. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2018, 34, 80–88. (In Chinese) [Google Scholar]
- Qi, X.Y.; Zhou, Z.Y.; Yang, C.; Luo, X.W.; Gu, X.Y.; Zang, Y.; Liu, W.L. Design and experiment of key parts of pneumatic variable-rate fertilizer applicator for rice production. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2016, 32, 20–26. (In Chinese) [Google Scholar]
- Ren, W.J.; Wu, Z.Y.; Li, M.L.; Lei, X.L.; Zhu, S.L.; Chen, Y. Design and Experiment of UAV Fertilization Spreader System for Rice. Trans. Chin. Soc. Agric. Mach. 2021, 52, 88–98. (In Chinese) [Google Scholar]
- Song, C.C.; Zhou, Z.Y.; Zang, Y.; Zhao, L.L.; Yang, W.W.; Luo, X.W.; Jiang, R.; Ming, R.; Zang, Y.; Zi, L.; et al. Variable-rate control system for UAV-based granular fertilizer spreader. Comput. Electron. Agric. 2021, 180, 105832. [Google Scholar] [CrossRef]
- Song, C.C.; Zang, Y.; Zhou, Z.Y.; Luo, X.W.; Zhao, L.L.; Ming, R.; Zi, L.; Zang, Y. Test and Comprehensive Evaluation for the Performance of UAV-Based Fertilizer Spreaders. IEEE Access 2020, 8, 202153–202163. [Google Scholar] [CrossRef]
- Zhou, H.; Yao, W.; Su, D.; Guo, S.; Zheng, Z.; Yu, Z.; Gao, D.; Li, H.; Chen, C. Application of a centrifugal disc fertilizer spreading system for UAVs in rice fields. Heliyon 2024, 10, e29837. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Li, M.; Lei, X.; Wu, Z.; Jiang, C.; Zhou, L.; Ma, R.; Chen, Y. Simulation and parameter optimisation of a centrifugal rice seeding spreader for a UAV. Biosyst. Eng. 2020, 192, 275–293. [Google Scholar] [CrossRef]
- Smith, D.B.; Willcutt, M.H.; Doler, J.C.; Dialllo, Y. Uniformity of granular fertilizer applications with a spinner truck. Appl. Eng. Agric. 2004, 20, 289–295. [Google Scholar] [CrossRef]
- Chojnacki, J.; Berner, B. The influence of air stream generated by drone rotors on transverse distribution pattern of sown seeds. J. Res. Appl. Agric. Eng. 2018, 63, 9–12. [Google Scholar]
- Li, W.; Li, C.; Huang, X.; Zhu, Y.; Wang, W. Operation quality control of rapeseed strip aerial seeding system via under-constrained seeding technique. Comput. Electron. Agric. 2023, 206, 107693. [Google Scholar] [CrossRef]
- Parish, R.L. Rate setting effects on fertilizer spreader distribution patterns. Appl. Eng. Agric. 2022, 18, 301–304. [Google Scholar]
- Yu, F.H.; Cao, Y.L.; Xu, T.Y.; Guo, Z.H.; Wang, D.K. Precision fertilization by UAV for rice at tillering stage in cold region based on hyperspectral remote sensing prescription map. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2020, 36, 103–110. (In Chinese) [Google Scholar]
- Su, D.; Yao, W.; Yu, F.; Liu, Y.; Zheng, Z.; Wang, Y.; Xu, T.; Chen, C. Single-Neuron PID UAV Variable Fertilizer Application Control System Based on a Weighted Coefficient Learning Correction. Agriculture 2022, 12, 1019. [Google Scholar] [CrossRef]
- Hu, C.; Fang, X.L.; Shi, Y.J. Design and test of pneumatic fertilizer apparatus in paddy field. J. Chin. Agric. Mech. 2022, 43, 14. [Google Scholar]
Test Group | Combination Name | Test Group | Combination Name | Test Group | Combination Name |
---|---|---|---|---|---|
1 | a1a2a3 | 10 | b1a2a3 | 19 | c1a2a3 |
2 | a1a2c3 | 11 | b1a2b3 | 20 | c1a2b3 |
3 | a1a2b3 | 12 | b1a2c3 | 21 | c1a2c3 |
4 | a1b2a3 | 13 | b1b2a3 | 22 | c1b2a3 |
5 | a1b2b3 | 14 | b1b2b3 | 23 | c1b2b3 |
6 | a1b2c3 | 15 | b1b2c3 | 24 | c1b2c3 |
7 | a1c2a3 | 16 | b1c2a3 | 25 | c1c2a3 |
8 | a1c2b3 | 17 | b1c2b3 | 26 | c1c2b3 |
9 | a1c2c3 | 18 | b1c2c3 | 27 | c1c2c3 |
Group | Variance | Variable Scope/% | Group | Variance | Variable Scope/% | Group | Variance | Variable Scope/% |
---|---|---|---|---|---|---|---|---|
a1a2a3 | 0.46 | 3.92–43.87 | a1b2a3 | 0.80 | 0.25–60.5 | a1c2a3 | 0.39 | 3.64–1.45 |
a1a2c3 | 0.44 | 1.27–49.36 | a1b2b3 | 0.50 | 0.75–39.10 | a1c2b3 | 0.52 | 3.64–45.87 |
a1a2b3 | 0.49 | 0.78–35.06 | a1b2c3 | 0.64 | 0.29–63.66 | a1c2c3 | 0.50 | 3.64–45.87 |
Group | Variance | Variable Scope/% | Group | Variance | Variable Scope/% | Group | Variance | Variable Scope/% |
---|---|---|---|---|---|---|---|---|
b1a2a3 | 0.37 | 3.07–41.43 | b1b2a3 | 0.32 | 6.74–40.41 | b1c2a3 | 0.44 | 2.73–43.18 |
b1a2b3 | 0.51 | 0.98–39.71 | b1b2b3 | 0.16 | 15.71–26.44 | b1c2b3 | 0.42 | 2.99–42.64 |
b1a2c3 | 0.48 | 2.43–41.85 | b1b2c3 | 0.36 | 6.95–41.19 | b1c2c3 | 0.44 | 1.01–41.92 |
Group | Variance | Variable Scope/% | Group | Variance | Variable Scope/% | Group | Variance | Variable Scope/% |
---|---|---|---|---|---|---|---|---|
c1a2a3 | 0.41 | 1.86–39.36 | c1b2a3 | 0.38 | 4.86–43.48 | c1c2a3 | 0.47 | 1.26–37.28 |
c1a2b3 | 0.55 | 0.24–41.95 | c1b2b3 | 0.80 | 0.25–37.59 | c1c2b3 | 0.48 | 0.5–36.07 |
c1a2c3 | 0.47 | 0.25–41.73 | c1b2c3 | 0.51 | 0.24–58.68 | c1c2c3 | 0.43 | 1.77–43.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.; Zhang, T.; Liu, L.; Wang, G.; Song, C.; Lan, Y. Impact of Variable Device Structural Changes on Particle Deposition Distribution in Multi-Rotor UAV. Drones 2024, 8, 583. https://doi.org/10.3390/drones8100583
Han J, Zhang T, Liu L, Wang G, Song C, Lan Y. Impact of Variable Device Structural Changes on Particle Deposition Distribution in Multi-Rotor UAV. Drones. 2024; 8(10):583. https://doi.org/10.3390/drones8100583
Chicago/Turabian StyleHan, Jingang, Tongsheng Zhang, Lilian Liu, Guobin Wang, Cancan Song, and Yubin Lan. 2024. "Impact of Variable Device Structural Changes on Particle Deposition Distribution in Multi-Rotor UAV" Drones 8, no. 10: 583. https://doi.org/10.3390/drones8100583
APA StyleHan, J., Zhang, T., Liu, L., Wang, G., Song, C., & Lan, Y. (2024). Impact of Variable Device Structural Changes on Particle Deposition Distribution in Multi-Rotor UAV. Drones, 8(10), 583. https://doi.org/10.3390/drones8100583