Lightweight UAV Small Target Detection and Perception Based on Improved YOLOv8-E
Abstract
:1. Introduction
- (1)
- First, the C2f-ESCFFM module is proposed, which enhances the spatial information reinforcement capability by integrating the SobelConv branch, suppresses the loss of feature information from the perspective of edge sensitivity, improves the spatial information reinforcement capability of the model and the edge-aware mechanism, and significantly reduces the probability of missed detection and reduces the error probability of repeated detection.
- (2)
- Second, this study applies the CAA (Context Anchor Attention) attention mechanism to the model and improves the HSFPN (High-level Screening-feature Pyramid Network) accordingly to obtain the CAHS-FPN (Context-Augmented Hierarchical Scale Feature Pyramid Network), which strengthens feature extraction while ensuring a lightweight model, enhances the central feature representation by constructing the relationship network between distant pixels, improves computational efficiency, and reduces computational cost.
- (3)
- Finally, the lightweight small target detection head LSCOD (Lightweight Shared Convolutional Object Detector Head) is introduced, enhancing the multi-scale target detection generalization by integrating a priori information into the standard convolution operation, thereby solving the problem of insufficiently sensitive detail feature capture in UAV small target detection and enhancing the detection ability of small targets.
2. Frameworks
2.1. YOLOv8-E Model
2.2. C2f-ESCFFM Module
2.3. CAHS-FPN Module
2.4. LSCOD Module
3. Experiments
3.1. Experimental Basis
3.2. Evaluation Metrics
4. Experimental Results and Analysis
4.1. Ablation and Parallel Testing
4.2. Experiments on Publicly Available Datasets
4.3. Results Visualization
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, P.; Zhang, R.; Yang, J.; Chen, L. Development status and key technologies of plant protection UAVs in China: A review. Drones 2022, 6, 354. [Google Scholar] [CrossRef]
- Daud, S.M.S.M.; Yusof, M.Y.P.M.; Heo, C.C.; Khoo, L.S.; Singh, M.K.C.; Mahmood, M.S.; Nawawi, H. Applications of drone in disaster management: A scoping review. Sci. Justice 2022, 62, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Mohsan SA, H.; Khan, M.A.; Noor, F.; Ullah, I.; Alsharif, M.H. Towards the unmanned aerial vehicles (UAVs): A comprehensive review. Drones 2022, 6, 147. [Google Scholar] [CrossRef]
- Moshref-Javadi, M.; Winkenbach, M. Applications and Research avenues for drone-based models in logistics: A classification and review. Expert Syst. Appl. 2021, 177, 114854. [Google Scholar] [CrossRef]
- Guo, Q.; Wu, F.; Hu, T.; Chen, L.; Liu, J.; Zhao, X.; Gao, S.; Pang, S. Perspectives and prospects of unmanned aerial vehicle in remote sensing monitoring of biodiversity. Biodivers. Sci. 2016, 24, 1267. [Google Scholar] [CrossRef]
- Chamola, V.; Kotesh, P.; Agarwal, A.; Gupta, N.; Guizani, M. A comprehensive review of unmanned aerial vehicle attacks and neutralization techniques. Ad Hoc Netw. 2021, 111, 102324. [Google Scholar] [CrossRef]
- Yaacoub, J.P.; Noura, H.; Salman, O.; Chehab, A. Security analysis of drones systems: Attacks, limitations, and recommendations. Internet Things 2020, 11, 100218. [Google Scholar] [CrossRef]
- Wang, C.; Tian, J.; Cao, J.; Wang, X. Deep learning-based UAV detection in pulse-Doppler radar. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–12. [Google Scholar] [CrossRef]
- Yang, T.; De Maio, A.; Zheng, J.; Su, T.; Carotenuto, V.; Aubry, A. An adaptive radar signal processor for UAVs detection with super-resolution capabilities. IEEE Sens. J. 2021, 21, 20778–20787. [Google Scholar] [CrossRef]
- Kumar, S.; Jain, A.; Rodrigues, C.A.; Dsouza, G.S.; Pooja, N. Gesture control of UAV using radio frequency. AIP Conf. Proc. 2020, 2311, 060003. [Google Scholar]
- Arjmandi, Z.; Kang, J.; Park, K.; Sohn, G. Benchmark dataset of ultra-wideband radio based UAV positioning. In Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece, 20–23 September 2020; pp. 1–8. [Google Scholar]
- Svanström, F.; Englund, C.; Alonso-Fernandez, F. Real-time drone detection and tracking with visible, thermal and acoustic sensors. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021; pp. 7265–7272. [Google Scholar]
- Kang, J.; Park, K.; Arjmandi, Z.; Sohn, G.; Shahbazi, M.; Ménard, P. Ultra-wideband aided UAV positioning using incremental smoothing with ranges and multilateration. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020; pp. 4529–4536. [Google Scholar]
- Zou, Z.; Chen, K.; Shi, Z.; Guo, Y.; Ye, J. Object detection in 20 years: A survey. Proc. IEEE 2023, 111, 257–276. [Google Scholar] [CrossRef]
- Kumar, S.S.; Amutha, R. Edge detection of angiogram images using the classical image processing techniques. In Proceedings of the IEEE-International Conference on Advances in Engineering, Science and Management (ICAESM-2012), Nagapattinam, India, 30–31 March 2012; pp. 55–60. [Google Scholar]
- Gangadharan, K.; Kumari, G.R.N.; Dhanasekaran, D.; Malathi, K. Automatic detection of plant disease and insect attack using effta algorithm. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 160–169. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, Y.; Lei, Z. Fast SIFT feature matching algorithm based on geometric transformation. IEEE Access 2020, 8, 88133–88140. [Google Scholar] [CrossRef]
- Dhal, K.G.; Das, A.; Ray, S.; Gálvez, J.; Das, S. Histogram equalization variants as optimization problems: A review. Arch. Comput. Methods Eng. 2021, 28, 1471–1496. [Google Scholar] [CrossRef]
- Tang, M.; Liang, K.; Qiu, J. Small insulator target detection based on multi-feature fusion. IET Image Process. 2023, 17, 1520–1533. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, W.; Shen, C.; Huang, Y. Vision-based on-road nighttime vehicle detection and tracking using improved HOG features. Sensors 2024, 24, 1590. [Google Scholar] [CrossRef]
- Hu, Z. A fast target detection method in the sky background. In Proceedings of the Third International Conference on Electronic Information Engineering, Big Data, and Computer Technology (EIBDCT 2024), Beijing, China, 26–28 January 2024; Volume 13181, pp. 490–496. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part I 14. Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 21–37. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Ross, T.Y.; Dollár, G. Focal loss for dense object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2980–2988. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef]
- Zhai, H.; Zhang, Y. Target Detection of Low-Altitude UAV Based on Improved YOLOv3 Network. J. Robot. 2022, 2022, 4065734. [Google Scholar] [CrossRef]
- Cheng, Q.; Li, X.; Zhu, B.; Shi, Y.; Xie, B. Drone detection method based on MobileViT and CA-PANet. Electronics 2023, 12, 223. [Google Scholar] [CrossRef]
- Liu, S.; Qu, J.; Wu, R. HollowBox: An anchor-free UAV detection method. IET Image Process. 2022, 16, 2922–2936. [Google Scholar] [CrossRef]
- Shi, Q.; Li, J. Objects detection of UAV for anti-UAV based on YOLOv4. In Proceedings of the 2020 IEEE 2nd International Conference on Civil Aviation Safety and Information Technology (ICCASIT), Weihai, China, 14–16 October 2020; pp. 1048–1052. [Google Scholar]
- Zamri, F.N.M.; Gunawan, T.S.; Yusoff, S.H.; Alzahrani, A.A.; Bramantoro, A.; Kartiwi, M. Enhanced Small Drone Detection using Optimized YOLOv8 with Attention Mechanisms. IEEE Access 2024, 12, 90629–90643. [Google Scholar] [CrossRef]
- Liu, H.; Fan, K.; Ouyang, Q.; Li, N. Real-time small drones detection based on pruned yolov4. Sensors 2021, 21, 3374. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Luo, H. An improved Yolov5 for multi-rotor UAV detection. Electronics 2022, 11, 2330. [Google Scholar] [CrossRef]
- Zhai, X.; Huang, Z.; Li, T.; Liu, H.; Wang, S. YOLO-Drone: An optimized YOLOv8 network for tiny UAV object detection. Electronics 2023, 12, 3664. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, C.; Chen, B.; Huang, Y.; Sun, Y.; Wang, C.; Fu, X.; Dai, Y.; Qin, F.; Peng, Y.; et al. Accurate leukocyte detection based on deformable-DETR and multi-level feature fusion for aiding diagnosis of blood diseases. Comput. Biol. Med. 2024, 170, 107917. [Google Scholar] [CrossRef]
- Cai, X.; Lai, Q.; Wang, Y.; Wang, W.; Sun, Z.; Yao, Y. Poly kernel inception network for remote sensing detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–22 June 2024; pp. 27706–27716. [Google Scholar]
- Wang, L.; You, Z.H.; Lu, W.; Chen, S.B.; Tang, J.; Luo, B. Attention-aware Sobel Graph Convolutional Network for Remote Sensing Image Change Detection. IEEE Trans. Geosci. Remote Sens. 2024, 62, 4409912. [Google Scholar] [CrossRef]
- Hu, K.; Yuan, X.; Chen, S. Real-time CNN-based keypoint detector with Sobel filter and descriptor trained with keypoint candidates. In Proceedings of the Fifteenth International Conference on Machine Vision (ICMV 2022), Rome, Italy, 18–20 November 2022; pp. 231–238. [Google Scholar]
- Chang, Q.; Li, X.; Li, Y.; Miyazaki, J. Multi-directional Sobel operator kernel on GPUs. J. Parallel Distrib. Comput. 2023, 177, 160–170. [Google Scholar] [CrossRef]
- Chen, Z.; He, Z.; Lu, Z.M. DEA-Net: Single image dehazing based on detail-enhanced convolution and content-guided attention. IEEE Trans. Image Process. 2024, 33, 1002–1015. [Google Scholar] [CrossRef]
- Ghiasi, G.; Lin, T.Y.; Le, Q.V. Nas-fpn: Learning scalable feature pyramid architecture for object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 7036–7045. [Google Scholar]
- Pawełczyk, M.; Wojtyra, M. Real world object detection dataset for quadcopter unmanned aerial vehicle detection. IEEE Access 2020, 8, 174394–174409. [Google Scholar] [CrossRef]
- Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [Google Scholar] [CrossRef]
- Lin, T.; Maire, M.; Belongie, S.J.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in Context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014. [Google Scholar]
- Bolya, D.; Foley, S.; Hays, J.; Hoffman, J. Tide: A general toolbox for identifying object detection errors. In Proceedings of the Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Proceedings, Part III 16. Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 558–573. [Google Scholar]
- Han, J.; Ren, Y.F.; Brighente, A.; Conti, M. RANGO: A Novel Deep Learning Approach to Detect Drones Disguising from Video Surveillance Systems. ACM Trans. Intell. Syst. Technol. 2024, 15, 1–21. [Google Scholar] [CrossRef]
- Wu, C. A drone detector with modified backbone and multiple pyramid featuremaps enhancement structure (MDDPE). arXiv 2024, arXiv:2405.02882. [Google Scholar]
- Zhao, Y.; Ju, Z.; Sun, T.; Dong, F.; Li, J.; Yang, R.; Fu, Q.; Lian, C.; Shan, P. TGC-YOLOv5: An Enhanced YOLOv5 Drone Detection Model Based on Transformer, GAM & CA Attention Mechanism. Drones 2023, 7, 446. [Google Scholar] [CrossRef]
- Yasmine, G.; Maha, G.; Hicham, M. Anti-drone systems: An attention based improved YOLOv7 model for a real-time detection and identification of multi-airborne target. Intell. Syst. Appl. 2023, 20, 200296. [Google Scholar] [CrossRef]
- Mehdi Ozel. Available online: https://www.kaggle.com/dasmehdixtr/drone-dataset-uav (accessed on 25 December 2021).
- Sun, H.; Yang, J.; Shen, J.; Liang, D.; Ning-Zhong, L.; Zhou, H. TIB-Net: Drone detection network with tiny iterative backbone. IEEE Access 2020, 8, 130697–130707. [Google Scholar] [CrossRef]
- Aksoy, M.C.; Orak, A.S.; Özkan, H.M.; Selimoglu, B. Drone Dataset: Amateur Unmanned Air Vehicle Detection. Mendeley Data 2019. [Google Scholar] [CrossRef]
- Chen, Y.; Aggarwal, P.; Choi, J.; Kuo CC, J. A deep learning approach to drone monitoring. In Proceedings of the 2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Kuala Lumpur, Malaysia, 12–15 December 2017; pp. 686–691. [Google Scholar]
- Zhao, J.; Zhang, J.; Li, D.; Wang, D. Vision-based anti-uav detection and tracking. IEEE Trans. Intell. Transp. Syst. 2022, 23, 25323–25334. [Google Scholar] [CrossRef]
- Coluccia, A.; Fascista, A.; Schumann, A.; Sommer, L.; Dimou, A.; Zarpalas, D.; Akyon, F.C.; Eryuksel, O.; Ozfuttu, K.A.; Altinuc, S.O.; et al. Drone-vs-bird detection challenge at IEEE AVSS2021. In Proceedings of the 2021 17th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Washington, DC, USA, 16–19 November 2021; pp. 1–8. [Google Scholar]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-Cam: Visual Explanations from Deep Networks via Gradient-Based Localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
Parameter | Numerical Value |
---|---|
Epochs | 200 |
Workers | 8 |
Initial learning rate | 0.01 |
Optimizer | SGD |
Input image size | 640 × 640 |
Random seed | 1 |
Model | Backbone | Neck | Head | P | R | mAP @0.5 | mAP @0.5:0.95 | Params (M) | GFLOPs | FPS |
---|---|---|---|---|---|---|---|---|---|---|
RANGO [46] | - | - | - | 0.795 | 0.782 | 0.800 | - | 17.064 | 26.8 | 64 |
SSD512 [47] | - | - | - | 0.755 | 0.723 | 0.761 | - | 27.8 | 35.5 | - |
MDDPE [47] | - | - | - | 0.800 | 0.791 | 0.801 | - | 3.2 | 1.5 | - |
TGC-YOLOv5 [48] | - | - | - | 0.959 | 0.936 | 0.975 | - | 19.7 | 13.4 | - |
YOLOv5s [48] | - | - | - | 0.957 | 0.919 | 0.966 | - | 7.04 | 16.3 | - |
YOLOv7x [49] | - | - | - | 0.992 | 0.984 | 0.993 | - | 70.840 | 189.0 | - |
YOLOv8 | - | - | - | 0.918 | 0.874 | 0.921 | 0.583 | 3.152 | 8.7 | 78.5 |
A | √ | 0.937 | 0.833 | 0.908 | 0.624 | 2.856 | 7.8 | 61.4 | ||
B | √ | 0.966 | 0.846 | 0.928 | 0.633 | 2.095 | 7.5 | 69.0 | ||
C | √ | 0.951 | 0.845 | 0.912 | 0.629 | 2.367 | 6.6 | 51.0 | ||
D | √ | √ | 0.951 | 0.822 | 0.909 | 0.609 | 1.940 | 7.1 | 55.2 | |
E | √ | √ | 0.947 | 0.788 | 0.896 | 0.614 | 2.212 | 6.3 | 66.7 | |
F | √ | √ | 0.949 | 0.869 | 0.927 | 0.625 | 1.729 | 6.3 | 73.0 | |
Ours | √ | √ | √ | 0.985 | 0.958 | 0.984 | 0.721 | 1.574 | 5.9 | 57.4 |
Model | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 |
---|---|---|---|---|---|---|---|---|---|---|
YOLOv8 | 86.23 | 85.71 | 84.39 | 80.99 | 75.24 | 65.83 | 47.34 | 28.45 | 6.80 | 1.21 |
A | 92.12 | 91.37 | 90.92 | 88.34 | 83.45 | 74.18 | 59.77 | 39.49 | 8.55 | 0.60 |
B | 91.48 | 90.82 | 89.56 | 87.30 | 81.65 | 71.51 | 55.85 | 29.27 | 9.06 | 0.75 |
C | 89.53 | 88.03 | 87.63 | 85.15 | 79.79 | 72.40 | 56.92 | 36.01 | 11.85 | 1.63 |
D | 90.14 | 89.50 | 88.47 | 85.57 | 82.31 | 70.71 | 51.37 | 30.72 | 7.71 | 0.78 |
E | 88.87 | 87.98 | 86.76 | 84.77 | 80.80 | 72.56 | 56.12 | 31.44 | 10.93 | 0.40 |
F | 91.88 | 91.23 | 90.33 | 86.46 | 82.96 | 72.57 | 54.66 | 30.55 | 10.63 | 0.69 |
Ours | 97.61 | 97.12 | 95.69 | 93.39 | 89.18 | 81.05 | 61.97 | 50.22 | 22.95 | 2.22 |
Dataset | DUT-Anti-UAV | TIB-Net | Drone Dataset | USC Drone Dataset | Drone Dataset (UAV) | Drone-vs-Bird | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
model | YOLOv8 | Ours | YOLOv8 | Ours | YOLOv8 | Ours | YOLOv8 | Ours | YOLOv8 | Ours | YOLOv8 | Ours |
P | 0.777 | 0.789 | 0.849 | 0.851 | 0.901 | 0.996 | 0.973 | 0.986 | 0.843 | 0.815 | 0.951 | 0.98 |
R | 0.628 | 0.721 | 0.774 | 0.807 | 0.864 | 0.923 | 0.926 | 0.963 | 0.769 | 0.904 | 0.929 | 0.912 |
[email protected] | 0.732 | 0.79 | 0.824 | 0.842 | 0.908 | 0.948 | 0.971 | 0.992 | 0.85 | 0.91 | 0.965 | 0.973 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Wang, L.; Lei, G.; Guo, C.; Ma, Q. Lightweight UAV Small Target Detection and Perception Based on Improved YOLOv8-E. Drones 2024, 8, 681. https://doi.org/10.3390/drones8110681
Zhao Y, Wang L, Lei G, Guo C, Ma Q. Lightweight UAV Small Target Detection and Perception Based on Improved YOLOv8-E. Drones. 2024; 8(11):681. https://doi.org/10.3390/drones8110681
Chicago/Turabian StyleZhao, Yongjuan, Lijin Wang, Guannan Lei, Chaozhe Guo, and Qiang Ma. 2024. "Lightweight UAV Small Target Detection and Perception Based on Improved YOLOv8-E" Drones 8, no. 11: 681. https://doi.org/10.3390/drones8110681
APA StyleZhao, Y., Wang, L., Lei, G., Guo, C., & Ma, Q. (2024). Lightweight UAV Small Target Detection and Perception Based on Improved YOLOv8-E. Drones, 8(11), 681. https://doi.org/10.3390/drones8110681