Intelligent Dynamic Trajectory Planning of UAVs: Addressing Unknown Environments and Intermittent Target Loss
Abstract
:1. Introduction
2. Preliminaries
2.1. Problem Formulation
2.2. Aircraft Motion Model
2.3. Target Motion Intention Model
2.4. Threat Model
3. Main Method
3.1. Prediction Algorithm of BITCN-BIGRU-AAM
3.1.1. BITCN
3.1.2. BIGRU
3.1.3. Auto-Attention Mechanism
3.2. Online Trajectory Planning
3.3. System Architecture
Algorithm 1: Complete Algorithm Pseudocode |
Input: ; ; , ; Output: optimal_trajectory for epoch = 0, …, Nepoch-1 do do using Equations (13)–(16) In the bidirectional GRU network, the feature sequence h using Equations (17) and (18) Compute the Q, K, and V values in the adaptive attention mechanism ; end for do Predict the output layer k-th then continue end if ) then break else end if end for end for return optimal_trajectory |
4. Experiments
4.1. Experimental Arrangement and Parameter Setting
4.2. Verification of Online Prediction Algorithm for Maneuvering Target
4.3. Overall System Verification
4.3.1. Design of Offline Trajectory Sample Library
- Generation of trajectory sample library
- Offline sample library training
- Performance verification of offline sample library
4.3.2. Performance Verification of Online Trajectory Planning
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, J.; He, R.; Tang, G.; Bao, W. Pendulum maneuvering strategy for hypersonic glide vehicles. Aerosp. Sci. Technol. 2018, 78, 62–70. [Google Scholar] [CrossRef]
- Ming, C.; Sun, R.; Wang, X. Velocity control based on active disturbance rejection for air-breathing supersonic vehicles. Complexity 2018, 2018, 6217657. [Google Scholar] [CrossRef]
- Mu, L.; Cao, S.; Wang, B.; Zhang, Y.; Feng, N.; Li, X. Pseudospectral-based rapid trajectory planning and feedforward linearization guidance. Drones 2024, 8, 371. [Google Scholar] [CrossRef]
- Liu, L.; Zhu, J.; Tang, G.; Bao, W. Diving guidance via feedback linearization and sliding mode control. Aerosp. Sci. Technol. 2015, 41, 16–23. [Google Scholar] [CrossRef]
- Ming, C.; Sun, R.; Bai, H. Terminal trajectory optimization for morphing wing missile with multi-constraints. In Proceedings of the 2016 IEEE Chinese Guidance, Navigation and Control Conference, Nanjing, China, 12–14 August 2016; pp. 2219–2224. [Google Scholar]
- Na, J.; Li, G.; Wang, B.; Herrmann, G.; Zhan, S. Robust optimal control of wave energy converters based on adaptive dynamic programming. IEEE Trans. Sustain. Energy 2018, 10, 961–970. [Google Scholar] [CrossRef]
- Betts, J.T. Survey of numerical methods for trajectory optimization. J. Guid. Control Dyn. 1998, 21, 193–207. [Google Scholar] [CrossRef]
- Aslan, M.F.; Durdu, A.; Sabanci, K. Goal distance-based UAV path planning approach, path optimization and learning-based path estimation: GDRRT*, PSO-GDRRT* and BiLSTM-PSO-GDRRT*. Appl. Soft Comput. 2023, 137, 110156. [Google Scholar] [CrossRef]
- Hull, D.G.; Speyer, J.L. Optimal reentry and plane-change trajectories. J. Astronaut. Sci. 1982, 30, 117–130. [Google Scholar]
- Christopher, L.D.; William, W.H.; Anil, V.R. An hp-adaptive pseudospectral method for solving optimal control problems. Optim. Control Appl. Methods 2011, 32, 476–502. [Google Scholar]
- Yildiz, B.; Aslan, M.F.; Durdu, A.; Kayabasi, A. Consensus-based virtual leader tracking swarm algorithm with GDRRT*-PSO for path-planning of multiple-UAVs. Swarm Evol. Comput. 2024, 88, 101612. [Google Scholar] [CrossRef]
- Xu, T.; Xu, Y.; Wang, D.; Chen, S.; Zhang, W.; Feng, L. Path planning for autonomous articulated vehicle based on improved goal-directed rapid-exploring random tree. Math. Probl. Eng. 2020, 2020, 7123164. [Google Scholar] [CrossRef]
- Peng, Q.; Li, H.; Shen, H.; Tang, G. Lunar exact-landing trajectory optimization via the method combining GPM with direct shooting method. Guofang Keji Daxue Xuebao/J. Natl. Univ. Def. Technol. 2012, 34, 119–124. [Google Scholar]
- Zhang, W.J.; Xiong, F.F. Gliding trajectory optimization method based on particle swarm optimization and direct shooting method. Appl. Mech. Mater. 2014, 615, 270–275. [Google Scholar] [CrossRef]
- Ming, C.; Sun, R.S.; Bai, H.Y.; Sun, C. Optimizing design of trajectory for multiple-pulse missiles based on hp-adaptive pseudo-spectral method. J. Solid Rocket. Technol. 2015, 38, 151–155. (In Chinese) [Google Scholar]
- Zhang, X.; Liu, S.; Yan, J.; Yan, B. Fixed-time cooperative trajectory optimization strategy for multiple hypersonic gliding vehicles based on neural network and ABC algorithm. Aeronaut. J. 2023, 127, 1737–1751. [Google Scholar] [CrossRef]
- Ming, C.; Sun, R.S.; Liang, Z.; Bai, H.Y. Design and analysis of footprint optimization method for multiple-pulse missile. J. Natl. Univ. Def. Technol. 2016, 38, 143–149. (In Chinese) [Google Scholar]
- Liu, C.; Zhang, C. Multi-stage trajectory optimization of tactical two-stage booster rocket based on gauss pseudospectral method. Binggong Xuebao/Acta Armamentarii 2019, 40, 292–302. [Google Scholar]
- Tian, R.; Zhang, Q.; Cui, L.; Yu, Y. Avoidance of no-fly zone for hypersonic vehicle based on adaptice radau pseudospectral method. In Proceedings of the 2022 7th International Conference on Intelligent Computing and Signal Processing, ICSP, Xi’an, China, 15–17 April 2022; pp. 1280–1286. [Google Scholar]
- Wang, L.; Xing, Q.; Mao, Y. Reentry trajectory rapid optimization for hypersonic vehicle satisfying waypoint and no-fly zone constraints. J. Syst. Eng. Electron. 2015, 26, 1277–1290. [Google Scholar] [CrossRef]
- Yang, Y.N.; Yan, Y. Neural network approximation-based nonsingular terminal sliding mode control for trajectory tracking of robotic airships. Aerosp. Sci. Technol. 2016, 54, 192–197. [Google Scholar] [CrossRef]
- Wang, J.; Wu, Y.; Liu, M.; Yang, M.; Liang, H. A real-time trajectory optimization method for hypersonic vehicles based on a deep neural network. Aerospace 2022, 9, 188. [Google Scholar] [CrossRef]
- Dai, P.; Feng, D.; Feng, W.; Cui, J.; Zhang, L. Entry trajectory optimization for hypersonic vehicles based on convex programming and neural network. Aerosp. Sci. Technol. 2023, 137, 108259. [Google Scholar] [CrossRef]
- Luo, Y.; Ishihara, A.K.; Krishnakumar, K.S. Optimal lateral trajectory tracking using backstepping with a fully tuned growing RBF neural network. In Proceedings of the AIAA Infotech at Aerospace Conference and Exhibit 2012, Garden Grove, CA, USA, 19–21 June 2012. [Google Scholar]
- Lu, S.; Qian, Y. Enhanced trajectory forecasting for hypersonic glide vehicle via physics-embedded neural ODE. Drones 2024, 8, 377. [Google Scholar] [CrossRef]
- Li, C.C. Research on Intelligent Guidance with Reinforcement Learning for Glide-Reentry Vehicle. Master’s Thesis, Zhejiang University, Hangzhou, China, 2022. (In Chinese). [Google Scholar]
- Xi, Z.F.; Kou, Y.X.; Li, Z.W.; Lv, Y.; Xu, A.; Li, Y.; Li, S.Q. Air combat target maneuver trajectory prediction based on robust regularized Volterra series and adaptive ensemble online transfer learning. Def. Technol. 2023, 20, 187–206. [Google Scholar]
- Huang, D.; Zhang, Z.; Fang, X.; He, M.; Lai, H.; Mi, B. STIF: A spatial-temporal integrated framework for end-to-end micro-UAV trajectory tracking and prediction with 4-D MIMO radar. IEEE Internet Things J. 2023, 10, 18821–18836. [Google Scholar] [CrossRef]
- Bai, S.; Kolter, J.Z.; Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv 2018, arXiv:1803.01271. [Google Scholar]
- Li, Z.; Xu, X. L2-BiTCN-CNN: Spatio-temporal features fusion-based multi-classification model for various internet applications identification. Comput. Netw. 2024, 243, 110298. [Google Scholar] [CrossRef]
- Bai, S.; Zico Kolter, J.; Koltun, V. Trellis networks for sequence modeling. In Proceedings of the 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Liu, S.Z.; Wang, Y.; Li, L.; Li, H.; Yu, Y. Gated recurrent unit network of particle swarm optimization for drifting buoy trajectory prediction. J. Electron. Inf. Technol. 2024, 47, 3295–3304. (In Chinese) [Google Scholar]
- Yang, C.; Liu, B.; Wang, J.; Shao, J.; Han, Z. LSTM intelligent trajectory prediction for hypersonic vehicles based on attention mechanism. Acta Armamentarii 2022, 43, 78–86. (In Chinese) [Google Scholar]
- Li, Z.W.; Zhang, S.; Qiao, Y.F.; Wang, Q.; Jiang, Y.; Zhang, F. Maneuvering trajectory prediction of air combat targets based on selfattention mechanism and CNN-LSTM. J. Ordnance Equip. Eng. 2023, 44, 209–216. (In Chinese) [Google Scholar]
- Wang, C.; Shi, Z.; Meng, L.; Wang, J.; Wang, T.; Gao, Q.; Wang, E. Anti-occlusion UAV tracking algorithm with a low-altitude complex background by integrating attention mechanism. Drones 2022, 6, 149. [Google Scholar] [CrossRef]
- Fernando, T.; Denman, S.; Sridharan, S.; Fookes, C. Soft + Hardwired attention: An LSTM framework for human trajectory prediction and abnormal event detection. Neural Netw. 2018, 108, 466–478. [Google Scholar] [CrossRef]
- Lin, L.; Li, W.; Bi, H.; Qin, L. Vehicle trajectory prediction using LSTMs with spatial-temporal attention mechanisms. IEEE Intell. Transp. Syst. Mag. 2022, 14, 197–208. [Google Scholar] [CrossRef]
- Zhang, P.; Ouyang, W.L.; Zhang, P.F.; Xue, J.R.; Zheng, N.N. SR-LSTM: State refinement for LSTM towards pedestrian trajectory prediction. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 12077–12086. [Google Scholar]
- Yan, S.Y.; Ming, C.; Wang, X.M.; Wei, Z.H.; Yang, K.Y. Trajectory optimization for climbing phase of hypersonic missile with multi-objective and multi-degree-of-freedom. Mod. Def. Technol. 2024; in press. (In Chinese) [Google Scholar]
- Shi, X.B.; Gu, H.; Su, W.M.; Dong, T.Q.; Chen, X.L. Study of target threat assessment for ground surveillance radar. Acta Armamentarii 2015, 36, 1128–1135. (In Chinese) [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Li, N.; Yang, Z.; Wang, Y.P.; Gao, X.Y. A trajectory prediction method for four-axis drone based on fusion of temporal attention in CNN-BiGRU. J. Wuhan Univ. Technol. (Transp. Sci. Eng.) 2024, 1–9. Available online: https://link.cnki.net/urlid/42.1824.U.20240409.1221.046 (accessed on 27 November 2024). (In Chinese).
- Bao, Z.P.; Zhi, Y.S.; Zhang, S.M.; He, R. BiGRU based multi-modal maneuvers and trajectory prediction. J. Dalian Univ. Technology 2021, 61, 246–254. (In Chinese) [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 30. [Google Scholar]
- Feng, W.; Huo, M.; Xu, Y.; Mo, L.; Ke, W.; Ma, Y.; Su, H.; Qi, N. A framework of gravity field online modeling and trajectory optimization in asteroid soft-landing mission scenarios. Aerosp. Sci. Technol. 2023, 143, 1270–9638. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, L.; Du, K.; Liu, G.; Yang, Q.; Wei, Y.; Fang, Q. An online collision-free trajectory generation algorithm for human-robot collaboration. Robot. Comput.-Integr. Manuf. 2023, 80, 0736–5845. [Google Scholar] [CrossRef]
- Kou, Y.X.; Xi, Z.F.; Xu, A.; Li, Z.W.; Yang, A.W. Target maneuvering trajectory prediction based on improved kernel extreme learning machine and ensemble learning theory. J. Natl. Univ. Def. Technol. 2021, 43, 23–35. (In Chinese) [Google Scholar]
Parameters | Value |
---|---|
Pitch plane (km) | 10 × 2 |
Initial position of online planning (m) | [2000, 578] |
Initial speed for online planning (m/s) | 500 |
Target speed (m/s) | 600 |
(°) | |
Comparisons of dynamic pressure (kPa) | |
Radius of interference and blind area released by aerial fighters (m) | |
Position of interference and blind area released by aerial fighters (m) | |
Alert radars (m) | |
Radar detection parameters |
Rectilinear Maneuver | Sinusoidal Maneuver | Irregular Maneuver | |
---|---|---|---|
MSE | 9.6197 × 10−17 | 15.1888 | 179.2565 |
RMSE | 9.808 × 10−9 | 3.8973 | 13.3887 |
MAE | 9.808 × 10−9 | 3.4995 | 7.181 |
MAPE (%) | 1.0621 × 10−10 | 0.06 | 0.097 |
ELM | BITCN | LSTM | SVR | BITCN-BIGRU-AAM | |
---|---|---|---|---|---|
MSE | 0.9234 | 0.0343 | 0.0187 | 0.0173 | 0.0062 |
RMSE | 0.6433 | 0.1239 | 0.0921 | 0.0882 | 0.053 |
MAE | 0.6861 | 0.1197 | 0.0792 | 0.0792 | 0.0451 |
MAPE (%) | 0.69 | 0.23 | 0.19 | 0.18 | 0.097 |
Deviation | Range |
---|---|
(m) | |
(m) | |
(m) | |
(m) | |
(m) |
Interference Zone | Dynamic Interference Zone | Static Interference Zone 1 | Static Interference Zone 2 |
---|---|---|---|
Radius (m) | (150200240) | 100 | 200 |
Position (m) | (5000, 1200) | (3620, 650) | (7300, 1190) |
radius of interference area (m) | 150 | 200 | 240 |
shortest distance (m) | 152 | 201 | 243 |
Interference Zone | Dynamic Interference Zone | Static Interference Zone 1 | Static Interference Zone 2 |
---|---|---|---|
Radius (m) | 200 | 100 | 200 |
Position (m) | (5000, 1200)(5500, 1300)(6000, 1330) | (3620, 650) | (7300, 1190) |
Position of interference area (m) | (5000, 1200) | (5500, 1300) | (6000, 1330) |
Radius of interference area (m) | 200 | 200 | 200 |
Shortest distance (m) | 200 | 202 | 201 |
Interference Zone | Dynamic Interference Zone | Static Interference Zone 1 | Static Interference Zone 2 |
---|---|---|---|
Radius (m) | 360 | 100 | 200 |
Position (m) | (1820, 1060) | (3620, 650) | (7300, 1190) |
Position of target Capture area (m) | (8680, 1610)(8680, 1630)(8680, 1650)(8680, 1670)(8680, 1690) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Yan, S.; Ming, C.; Wang, X. Intelligent Dynamic Trajectory Planning of UAVs: Addressing Unknown Environments and Intermittent Target Loss. Drones 2024, 8, 721. https://doi.org/10.3390/drones8120721
Yang Z, Yan S, Ming C, Wang X. Intelligent Dynamic Trajectory Planning of UAVs: Addressing Unknown Environments and Intermittent Target Loss. Drones. 2024; 8(12):721. https://doi.org/10.3390/drones8120721
Chicago/Turabian StyleYang, Zhengpeng, Suyu Yan, Chao Ming, and Xiaoming Wang. 2024. "Intelligent Dynamic Trajectory Planning of UAVs: Addressing Unknown Environments and Intermittent Target Loss" Drones 8, no. 12: 721. https://doi.org/10.3390/drones8120721
APA StyleYang, Z., Yan, S., Ming, C., & Wang, X. (2024). Intelligent Dynamic Trajectory Planning of UAVs: Addressing Unknown Environments and Intermittent Target Loss. Drones, 8(12), 721. https://doi.org/10.3390/drones8120721