Post-Disaster Emergency Communications Enhanced by Drones and Non-Orthogonal Multiple Access: Three-Dimensional Deployment Optimization and Spectrum Allocation
Abstract
:1. Introduction
- First, the drawback of OMA lies in its relatively low spectrum utilization efficiency. The allocation of orthogonal subcarriers to users in OMA results in spectrum resource wastage, especially when the number of users is low or unevenly distributed. NOMA, on the other hand, allows multiple users to share the same frequency resource on the same subcarrier in a non-orthogonal manner, improving spectrum utilization efficiency, especially in scenarios with an uncertain and uneven distribution of users in PDEComs.
- Second, NOMA exhibits advantages such as higher system throughput and lower channel latency. In OMA, the requirement for orthogonality between subcarriers imposes limitations on the system throughput. NOMA, by allowing multiple users to transmit simultaneously on the same subcarrier, enhances the overall system throughput. Furthermore, NOMA manages interference among users through non-orthogonal means, reducing channel latency and improving communication quality.
- Finally, the introduction of NOMA also serves to increase the connection density and flexibility of emergency communication networks. Due to NOMA allowing multiple users to share the same frequency resource, the emergency communication network can accommodate more user connections, adapting to significant network load fluctuations in PDEComs. Additionally, NOMA exhibits strong flexibility, allowing dynamic resource allocation based on user demands, achieving more flexible and efficient communication.
2. Related Work
3. System Model and Problem Formulation
4. QoS-Driven Sum Rate Maximization Scheme
Algorithm 1 QoS-driven sum rate maximization scheme |
|
4.1. Spectrum Allocation
4.2. Deployment Optimization
4.2.1. LSTM-Based RNN
4.2.2. SGD Algorithm
Algorithm 2 Deployment optimization algorithm |
|
4.3. Complexity Analysis
5. Simulation Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tran, D.-H.; Nguyen, V.-D.; Chatzinotas, S.; Vu, T.X.; Ottersten, B. UAV relay-assisted emergency communications in IoT networks: Resource allocation and trajectory optimization. IEEE Trans. Wireless Commun. 2022, 21, 1621–1637. [Google Scholar] [CrossRef]
- Prasad, N.-L.; Ramkumar, B. 3-D Deployment and Trajectory Planning for Relay Based UAV Assisted Cooperative Communication for Emergency Scenarios Using Dijkstra’s Algorithm. IEEE Trans. Veh. Technol. 2023, 72, 5049–5063. [Google Scholar] [CrossRef]
- Xiao, Z.; Han, Z.; Nallanathan, A.; Dobre, O.A.; Clerckx, B.; Choi, J.; He, C.; Tong, W. Antenna array enabled space/air/ground communications and networking for 6G. IEEE J. Sel. Areas Commun. 2022, 40, 2773–2804. [Google Scholar] [CrossRef]
- Schweiger, K.; Preis, L. Urban air mobility: Systematic review of scientific publications and regulations for vertiport design and operation. Drones 2022, 6, 179. [Google Scholar] [CrossRef]
- Alsamhi, S.H.; Shvetsov, A.V.; Kumar, S.; Hassan, J.; Alhartomi, M.A.; Shvetsova, S.V.; Sahal, R.; Hawbani, A. Computing in the sky: A survey on intelligent ubiquitous computing for UAV-assisted 6G networks and industry 4.0/5.0. Drones 2022, 6, 177. [Google Scholar] [CrossRef]
- Aggarwal, S.; Kumar, N.; Tanwar, S. Blockchain-envisioned UAV communication using 6G networks: Open issues, use cases, and future directions. IEEE Internet Things J. 2021, 8, 5416–5441. [Google Scholar] [CrossRef]
- Zhang, J.; Sheng, H.; Chen, Q.; Zhou, H.; Yin, B.; Li, J.; Li, M. A four-dimensional space-time automatic obstacle avoidance trajectory planning method for multi-UAV cooperative formation flight. Drones 2022, 6, 192. [Google Scholar] [CrossRef]
- Khoufi, I.; Laouiti, A.; Adjih, C. A survey of recent extended variants of the traveling salesman and vehicle routing problems for unmanned aerial vehicles. Drones 2019, 3, 66. [Google Scholar] [CrossRef]
- Tang, X.; Chen, F.; Wang, F.; Jia, Z. Disaster-resilient emergency communication with intelligent air-ground cooperation. IEEE Internet Things J. 2024, 11, 5331–5346. [Google Scholar] [CrossRef]
- Chen, R.; Cheng, W.; Ding, Y.; Wang, B. QoS-guaranteed multi-UAV coverage scheme for IoT communications with interference management. IEEE Internet Things J. 2024, 11, 4116–4126. [Google Scholar] [CrossRef]
- Zhou, Y.; Wong, V.W.S.; Schober, R. Dynamic decode-and-forward based cooperative NOMA with spatially random users. IEEE Trans. Wirel. Commun. 2018, 17, 3340–3356. [Google Scholar] [CrossRef]
- He, Y.; Wang, D.; Huang, F.; Zhang, R.; Gu, X.; Pan, J. A V2I and V2V collaboration framework to support emergency communications in ABS-aided Internet of Vehicles. IEEE Trans. Green Commun. Netw. 2023, 7, 2038–2051. [Google Scholar] [CrossRef]
- Wang, J.; Liu, M.; Sun, J.; Gui, G.; Gacanin, H.; Sari, H.; Adachi, F. Multiple unmanned-aerial-vehicles deployment and user pairing for nonorthogonal multiple access schemes. IEEE Internet Things J. 2021, 8, 1883–1895. [Google Scholar] [CrossRef]
- Hu, B.; Wang, L.; Chen, S.; Cui, J.; Chen, L. An uplink throughput optimization scheme for UAV-enabled urban emergency communications. IEEE Internet Things J. 2022, 9, 4291–4302. [Google Scholar] [CrossRef]
- He, Y.; Huang, F.; Wang, D.; Zhang, R.; Gu, X.; Pan, J. NOMA- and MRC-enabled enabled framework in drone-relayed vehicular networks: Height/trajectory optimization and performance analysis. IEEE Internet Things J. 2023, 10, 22305–22319. [Google Scholar] [CrossRef]
- Mirbolouk, S.; Valizadeh, M.; Amirani, M.C.; Ali, S. Relay selection and power allocation for energy efficiency maximization in hybrid satellite-UAV networks with CoMP-NOMA transmission. IEEE Trans. Veh. Technol. 2022, 71, 5087–5100. [Google Scholar] [CrossRef]
- Wang, C.; Deng, D.; Xu, L.; Wang, W. Resource scheduling based on deep reinforcement learning in UAV assisted emergency communication networks. IEEE Trans. Commun. 2022, 70, 3834–3848. [Google Scholar] [CrossRef]
- Yao, Z.; Cheng, W.; Zhang, W.; Zhang, H. Resource allocation for 5G-UAV-based emergency wireless communications. IEEE J. Sel. Areas Commun. 2021, 39, 3395–3410. [Google Scholar] [CrossRef]
- Zhong, X.; Guo, Y.; Li, N.; Chen, Y. Joint optimization of relay deployment channel allocation and relay assignment for UAVs-aided D2D networks. IEEE/ACM Trans. Netw. 2020, 28, 804–817. [Google Scholar] [CrossRef]
- Wang, N.; Li, F.; Chen, D.; Liu, L.; Bao, Z. NOMA-based energy-efficiency optimization for UAV enabled space-air-ground integrated relay networks. IEEE Trans. Veh. Technol. 2022, 71, 4129–4141. [Google Scholar] [CrossRef]
- Zhai, D.; Li, H.; Tang, X.; Zhang, R.; Ding, Z.; Yu, F.R. Height optimization and resource allocation for NOMA enhanced UAV-aided relay networks. IEEE Trans. Commun. 2021, 69, 962–975. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, R.; Wu, L.; Zhong, Z.; He, L.; Liu, J.; Pang, X. Path loss measurement and modeling for low-altitude UAV access channels. In Proceedings of the 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, ON, Canada, 24–27 September 2017; pp. 1–5. [Google Scholar]
- Bian, J.; Wang, C.-X.; Liu, Y.; Tian, J.; Qiao, J.; Zheng, X. 3D non-stationary wideband UAV-to-ground MIMO channel models based on aeronautic random mobility model. IEEE Trans. Veh. Technol. 2021, 70, 11154–11168. [Google Scholar] [CrossRef]
- Ge, C.; Zhang, R.; Zhai, D.; Jiang, Y.; Li, B. UAV-correlated MIMO channels: 3-D geometrical-based polarized model and capacity analysis. IEEE Internet Things J. 2023, 10, 1446–1460. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, C.-X.; Chang, H.; He, Y.; Bian, J. A novel non-stationary 6G UAV channel model for maritime communications. IEEE J. Sel. Areas Commun. 2021, 39, 2992–3005. [Google Scholar] [CrossRef]
- Liang, L.; Kim, J.; Jha, S.C.; Sivanesan, K.; Li, G.Y. Spectrum and power allocation for vehicular communications with delayed CSI feedback. IEEE Wireless Commun. Lett. 2017, 6, 458–461. [Google Scholar] [CrossRef]
- Dang, Y.; Karakoc, A.; Norshahida, S.; Jäntti, R. 3D radio map-based GPS spoofing detection and mitigation for cellular-connected UAVs. IEEE Trans. Mach. Learn. Commun. Netw. 2023, 1, 313–327. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, Q.; Xia, R.; Li, G.; Gao, J.; Zhou, H.; Zhao, B. Defect depth determination in laser infrared thermography based on LSTM-RNN. IEEE Access 2020, 8, 153385–153393. [Google Scholar] [CrossRef]
- Shehzad, M.K.; Rose, L.; Assaad, M. RNN-based twin channel predictors for CSI acquisition in UAV-assisted 5G+ networks. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 7–11 December 2021; pp. 1–6. [Google Scholar]
- Jiang, Y.; Nihei, K.; Li, J.; Yoshida, H.; Kanetomo, D. Learning on the fly: An RNN-based online throughput prediction framework for UAV communications. In Proceedings of the IEEE International Conference on Communications Workshops (ICC Workshops), Dublin, Ireland, 7–11 June 2020; pp. 1–7. [Google Scholar]
- Shan, D.; Luo, Y.; Zhang, X.; Zhang, C. DRRNets: Dynamic recurrent routing via low-rank regularization in recurrent neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 2057–2067. [Google Scholar] [CrossRef]
- Rama-Maneiro, E.; Vidal, J.C.; Lama, M. Embedding graph convolutional networks in recurrent neural networks for predictive monitoring. IEEE Trans. Knowl. Data Eng. 2024, 36, 137–151. [Google Scholar] [CrossRef]
- Beiran, M.; Spencer-Salmon, C.A.; Rajan, K. A ‘programming’ framework for recurrent neural networks. Nat. Mach. Intell. 2023, 5, 570–571. [Google Scholar] [CrossRef]
- Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Khawaja, W.; Guvenc, I.; Matolak, D.W.; Fiebig, U.-C.; Schneckenburger, N. A survey of air-to-ground propagation channel modeling for unmanned aerial vehicles. IEEE Commun. Surv. Tutor. 2019, 21, 2361–2391. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Zhu, L.; Huang, F.; Wang, D.; Li, X.; Wu, T.; He, Y. Post-Disaster Emergency Communications Enhanced by Drones and Non-Orthogonal Multiple Access: Three-Dimensional Deployment Optimization and Spectrum Allocation. Drones 2024, 8, 63. https://doi.org/10.3390/drones8020063
Li L, Zhu L, Huang F, Wang D, Li X, Wu T, He Y. Post-Disaster Emergency Communications Enhanced by Drones and Non-Orthogonal Multiple Access: Three-Dimensional Deployment Optimization and Spectrum Allocation. Drones. 2024; 8(2):63. https://doi.org/10.3390/drones8020063
Chicago/Turabian StyleLi, Linyang, Lijun Zhu, Fanghui Huang, Dawei Wang, Xin Li, Tong Wu, and Yixin He. 2024. "Post-Disaster Emergency Communications Enhanced by Drones and Non-Orthogonal Multiple Access: Three-Dimensional Deployment Optimization and Spectrum Allocation" Drones 8, no. 2: 63. https://doi.org/10.3390/drones8020063
APA StyleLi, L., Zhu, L., Huang, F., Wang, D., Li, X., Wu, T., & He, Y. (2024). Post-Disaster Emergency Communications Enhanced by Drones and Non-Orthogonal Multiple Access: Three-Dimensional Deployment Optimization and Spectrum Allocation. Drones, 8(2), 63. https://doi.org/10.3390/drones8020063