Wheat Yield Prediction Using Machine Learning Method Based on UAV Remote Sensing Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Location and Design
2.2. Multi-Sensor Image Acquisition and Processing Based on UAV
2.3. Extraction of Vegetation and Texture Index
Sensor | Spectral Indices | Equation | References |
---|---|---|---|
RGB | Red Green Blue Vegetation Index | RGBVI = (G2 − B × R)/(G2 + B × R) | [31] |
Plant Pigment Ratio | PPR = (G − B)/(G + B) | [32] | |
Green Leaf Algorithm | GLA = (2 × G − R − B)/(2 × G + R + B) | [33] | |
Excess Green Index | ExG = 2 × G − R − B | [34] | |
Color Index of Vegetation Extraction | CIVE = 0.441 × R − 0.881 × G + 0.3856 × B + 18.78745 | [35] | |
Visible Atmospherically Resistant Index | VARI = (G − R)/(G + R − B) | [36] | |
Kawashima Index | IKAW = (R − B)/(R + B) | [37] | |
Woebbecke Index | WI = (G − B)/(R − G) | [34] | |
Green Blue Ratio Index | GBRI = G/B | [38] | |
Red Blue Ratio Index | RBRI = R/B | [38] | |
MS | Green-NDVI | GNDVI = (NIR − G)/(NIR + G) | [39] |
MERIS Terrestrial Chlorophyll Index | MTCI = (NIR − R)/(RE − R) | [40] | |
Normalized Difference Vegetation Index | NDVI = (NIR − R)/(NIR + R) | [36] | |
Ratio Vegetation Index | RVI1 = NIR/R | [41] | |
Ratio Vegetation Index | RVI2 = NIR/G | [42] | |
Modified Simple Ratio Index | MSRI = (NIR/R − 1)/(NIR/R + 1)0.5 | [43] | |
Re-normalized Difference Vegetation Index | RDVI = (NIR − R)/(NIR + R)0.5 | [44] | |
Structure Insensitive Pigment Index | SIPI = (NIR − B)/(NIR + B) | [45] | |
Color Index | CI = NIR/G − 1 | [46] | |
Generalized Soil-adjusted Vegetation Index | GOSAVI = (NIR − G)/(NIR + G + 0.16) | [47] | |
Plant Senescence Reflectance Index | PSRI = (R − B)/NIR | [48] |
2.4. Ensemble Learning Framework
2.5. Model Performance Evaluation
3. Results
3.1. Principal Component Analysis of Texture Features
3.2. Correlation Analysis of CI, VI, Texture Features and TIR with Wheat Yield
3.3. Wheat Yield Prediction for Optimal Sensor
3.4. Optimal Machine Learning Algorithm for Wheat Yield Prediction
4. Discussion
4.1. Prediction of Wheat Yield from Single Sensor Data and Multi-Sensor Fusion Data
4.2. Application of Basic Model in Wheat Yield Prediction
4.3. Performance of Ensemble Learning in Wheat Yield Prediction
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, C.; Dong, Z.; Zhao, L.; Ren, Y.; Zhang, N.; Chen, F. The wheat 660k SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. Plant Biotechnol. J. 2020, 18, 1354–1360. [Google Scholar] [CrossRef]
- Zhou, X.; Zheng, H.B.; Xu, X.Q.; He, J.Y.; Ge, X.K.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.X.; Tian, Y.C. Predicting grain yield in rice using multi-temporal vegetation indices from uav-based multispectral and digital imagery. ISPRS J. Photogramm. Remote Sens. 2017, 130, 246–255. [Google Scholar] [CrossRef]
- Bian, C.; Shi, H.; Wu, S.; Zhang, K.; Wei, M.; Zhao, Y.; Sun, Y.; Zhuang, H.; Zhang, X.; Chen, S. Prediction of Field-Scale Wheat Yield Using Machine Learning Method and Multi-Spectral UAV Data. Remote Sens. 2022, 14, 1474. [Google Scholar] [CrossRef]
- Xu, W.; Chen, P.; Zhan, Y.; Chen, S.; Zhang, L.; Lan, Y. Cotton yield estimation model based on machine learning using time series uav remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102511. [Google Scholar] [CrossRef]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Yao, H.; Qin, R.; Chen, X. Unmanned aerial vehicle for remote sensing applications—A review. Remote Sens. 2019, 11, 1443. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Sagan, V.; Sidike, P.; Hartling, S.; Fritschi, F.B. Soybean yield prediction from UAV using multimodal data fusion and deep learning. Remote Sens. Environ. 2020, 237, 111599. [Google Scholar] [CrossRef]
- Li, B.; Xu, X.; Zhang, L.; Han, J.; Jin, L. Above-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging. ISPRS J. Photogramm. Remote Sens. 2020, 162, 161–172. [Google Scholar] [CrossRef]
- Hassan, M.A.; Yang, M.; Rasheed, A.; Yang, G.; Reynolds, M.; Xia, X.; Xiao, Y.; He, Z. A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform. Plant Sci. 2019, 282, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Concepcion, R.S., II; Lauguico, S.C.; Alejandrino, J.D.; Dadios, E.P.; Sybingco, E. Lettuce Canopy Area Measurement Using Static Supervised Neural Networks Based on Numerical Image Textural Feature Analysis of Haralick and Gray Level Co-Occurrence Matrix. AGRIVITA J. Agric. Sci. 2020, 42, 472–486. [Google Scholar] [CrossRef]
- Das, S.; Christopher, J.; Apan, A.; Choudhury, M.R.; Chapman, S.; Menzies, N.W.; Dang, Y.P. UAV-thermal imaging: A robust technology to evaluate in-field crop water stress and yield variation of wheat genotypes. In Proceedings of the 2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS), Ahmedabad, India, 1–4 December 2020; pp. 138–141. [Google Scholar] [CrossRef]
- Gadhwal, M.; Sharda, A.; Sangha, H.S.; Van der Merwe, D. Spatial corn canopy temperature extraction: How focal length and sUAS flying altitude influence thermal infrared sensing accuracy. Comput. Electron. Agric. 2023, 209, 107812. [Google Scholar] [CrossRef]
- Fei, S.; Hassan, M.A.; Xiao, Y.; Su, X.; Chen, Z.; Cheng, Q.; Duan, F.; Chen, R.; Ma, Y. UAV-based multi-sensor data fusion and machine learning algorithm for yield prediction in wheat. Precis. Agric. 2022, 24, 187–212. [Google Scholar] [CrossRef] [PubMed]
- Ramos, A.P.M.; Osco, L.P.; Furuya, D.E.G.; Gonalves, W.N.; Pistori, H. A random forest ranking approach to predict yield in maize with uav-based vegetation spectral indices. Comput. Electron. Agric. 2020, 178, 105791. [Google Scholar] [CrossRef]
- Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine Learning in Agriculture: A Review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Zhang, Z.; Cao, J.; Luo, Y.; Zhang, L.; Li, Z.; Zhang, J. Prediction of Winter Wheat Yield Based on Multi-Source Data and Machine Learning in China. Remote Sens. 2020, 12, 236. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Ghulam, A.; Sidike, P.; Hartling, S.; Maimaitiyiming, M.; Peterson, K.; Shavers, E.; Fishman, J.; Peterson, J.; Kadam, S.; et al. Unmanned aerial system (UAS)-based phenotyping of soybean using multi-sensor data fusion and extreme learning machine. ISPRS J. Photogramm. Remote Sens. 2017, 134, 43–58. [Google Scholar] [CrossRef]
- Ahmed, A.A.M.; Sharma, E.; Jui, S.J.J.; Deo, R.C.; Nguyen-Huy, T.; Ali, M. Kernel ridge regression hybrid method for wheat yield prediction with satellite-derived predictors. Remote Sens. 2022, 14, 1136. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, Z.; Ma, Y.; Du, Q.; Williams, P.; Drewry, J. Alfalfa yield prediction using UAV-based hyperspectral imagery and ensemble learning. Remote Sens. 2020, 12, 2028. [Google Scholar] [CrossRef]
- Sarijaloo, F.B.; Porta, M.; Taslimi, B.; Pardalos, P.M. Yield performance estimation of corn hybrids using machine learning algorithms. Aritificial Intell. Agric. 2021, 5, 82–89. [Google Scholar] [CrossRef]
- Chlingaryan, S.W.B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Comput. Electron. Agric. 2018, 151, 61–69. [Google Scholar] [CrossRef]
- Van der Laan, M.J.; Polley, E.C.; Hubbard, A.E. Super learner. Stat. Appl. Genet. Mol. Biol. 2007, 6. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Zhiwen, Y.U.; Cao, W.; Shi, Y.; Qianli, M.A. A survey on ensemble learning. Front. Comput. Sci. 2020, 14, 241–258. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Shen, W. A review of ensemble learning algorithms used in remote sensing applications. Appl. Sci. 2022, 12, 8654. [Google Scholar] [CrossRef]
- Zhang, W.; Ren, H.; Jiang, Q.; Zhang, K. Exploring Feature Extraction and ELM in Malware Detection for Android Devices. In International Symposium on Neural Networks; Springer: Cham, Switzerland, 2015; pp. 489–498. [Google Scholar] [CrossRef]
- Niño-Adan, I.; Manjarres, D.; Landa-Torres, I.; Portillo, E. Feature weighting methods: A review. Expert Syst. Appl. 2021, 184, 115424. [Google Scholar] [CrossRef]
- Liu, Z.; Wen, T.; Sun, W.; Zhang, Q. Semi-supervised self-training feature weighted clustering decision tree and random forest. IEEE Access 2020, 8, 128337–128348. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant remote sensing vegetation indices: A review of developments and applications. J. Sens. 2017, 1, 1–17. [Google Scholar] [CrossRef]
- Humeau-Heurtier, A. Texture feature extraction methods: A survey. IEEE Access 2019, 7, 8975–9000. [Google Scholar] [CrossRef]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.; Bareth, G. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87. [Google Scholar] [CrossRef]
- Peñuelas, J.; Gamon, J.A.; Fredeen, A.L.; Merino, J.; Field, C.B. Reflectance indices associated with physiological changes in nitrogen-and water-limited sunflower leaves. Remote Sens. Environ. 1994, 48, 135–146. [Google Scholar] [CrossRef]
- Louhaichi, M.; Borman, M.M.; Johnson, D.E. Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto Int. 2001, 16, 65–70. [Google Scholar] [CrossRef]
- Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D.A. Color indices for weed identification under various soil, residue, and lighting conditions. Trans. ASAE 1995, 38, 259–269. [Google Scholar] [CrossRef]
- Guijarro, M.; Pajares, G.; Riomoros, I.; Herrera, P.J.; Burgos-Artizzu, X.P.; Ribeiro, A. Automatic segmentation of relevant textures in agricultural images. Comput. Electron. Agric. 2011, 75, 75–83. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef]
- Kawashima, S.; Nakatani, M. An algorithm for estimating chlorophyll content in leaves using a video camera. Ann. Bot. 1998, 81, 49–54. [Google Scholar] [CrossRef]
- Sellaro, R.; Crepy, M.; Trupkin, S.A.; Karayekov, E.; Buchovsky, A.S.; Rossi, C.; Casal, J.J. Cryptochrome as a sensor of the blue/green ratio of natural radiation in Arabidopsis. Plant Physiol. 2010, 154, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Gitelson, A.A.; Merzlyak, M.N. Signature analysis of leaf reflectance spectra: Algorithm development for remote sensing of chlorophyll. J. Plant Physiol. 1996, 148, 494–500. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, L. The potential of the MERIS Terrestrial Chlorophyll Index for crop yield prediction. Remote Sens. Lett. 2014, 5, 733–742. [Google Scholar] [CrossRef]
- Pinter, P.J., Jr.; Hatfield, J.L.; Schepers, J.S.; Barnes, E.M.; Moran, M.S.; Daughtry, C.S.; Upchurch, D.R. Remote sensing for crop management. Photogramm. Eng. Remote Sens. 2003, 69, 647–664. [Google Scholar] [CrossRef]
- Xue, L.; Cao, W.; Luo, W.; Dai, T.; Zhu, Y. Monitoring leaf nitrogen status in rice with canopy spectral reflectance. Agron. J. 2004, 96, 135–142. [Google Scholar] [CrossRef]
- Chen, J.M. Evaluation of vegetation indices and a modified simple ratio for boreal applications. Can. J. Remote Sens. 1996, 22, 229–242. [Google Scholar] [CrossRef]
- Roujean, J.L.; Breon, F.M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Peñuelas, J.; Filella, I.; Gamon, J.A. Assessment of photosynthetic radiation-use efficiency with spectral refectance. New Phytol. 1995, 131, 291–296. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Arkebauer, T.J.; Rundquist, D.C.; Keydan, G.; Leavitt, B. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophys. Res. Lett. 2003, 30, 52. [Google Scholar] [CrossRef]
- Gilabert, M.A.; González-Piqueras, J.; Garcıa-Haro, F.J.; Meliá, J. A generalized soil-adjusted vegetation index. Remote Sens. Environ. 2002, 82, 303–310. [Google Scholar] [CrossRef]
- Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol. Plant. 1999, 106, 135–141. [Google Scholar] [CrossRef]
- Quinlan, J.R. Learning with continuous classes. In Proceedings of the 5th Australian Joint Conference on Artificial Intelligence, Hobart, Australia, 16–18 November 1992; Volume 92, pp. 343–348. [Google Scholar] [CrossRef]
- Fei, S.; Hassan, M.A.; He, Z.; Chen, Z.; Shu, M.; Wang, J.; Li, C.; Xiao, Y. Assessment of ensemble learning to predict wheat grain yield based on UAV-multispectral reflectance. Remote Sens. 2021, 13, 2338. [Google Scholar] [CrossRef]
- Janneh, L.L.; Zhang, Y.; Cui, Z.; Yang, Y. Multi-level feature re-weighted fusion for the semantic segmentation of crops and weeds. J. King Saud Univ.-Comput. Inf. Sci. 2023, 35, 101545. [Google Scholar] [CrossRef]
- Yu, D.; Zha, Y.; Shi, L.; Jin, X.; Hu, S.; Yang, Q.; Huang, K.; Zeng, W.Z. Improvement of sugarcane yield estimation by assimilating UAV-derived plant height observations. Eur. J. Agron. 2020, 121, 126159. [Google Scholar] [CrossRef]
- Croci, M.; Impollonia, G.; Meroni, M.; Amaducci, S. Dynamic maize yield predictions using machine learning on multi-source data. Remote Sens. 2022, 15, 100. [Google Scholar] [CrossRef]
- Pham, H.T.; Awange, J.; Kuhn, M.; Nguyen, B.V.; Bui, L.K. Enhancing Crop Yield Prediction Utilizing Machine Learning on Satellite-Based Vegetation Health Indices. Sensors 2022, 22, 719. [Google Scholar] [CrossRef] [PubMed]
- Soria, X.; Sappa, A.D.; Akbarinia, A. Multispectral single-sensor RGB-NIR imaging: New challenges and opportunities. In Proceedings of the 2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA), Montreal, QC, Canada, 28 November–1 December 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Cao, X.; Liu, Y.; Yu, R.; Han, D.; Su, B. A comparison of UAV RGB and multispectral imaging in phenotying for stay green of wheat population. Remote Sens. 2021, 13, 5173. [Google Scholar] [CrossRef]
- Luz, B.R.D.; Crowley, J.K. Identification of plant species by using high spatial and spectral resolution thermal infrared (8.0–13.5μm) imagery. Remote Sens. Environ. 2010, 114, 404–413. [Google Scholar] [CrossRef]
- Elarab, M.; Ticlavilca, A.M.; Torres-Rua, A.F.; Maslova, I.; Mckee, M. Estimating chlorophyll with thermal and broadband multispectral high resolution imagery from an unmanned aerial system using relevance vector machines for precision agriculture. Int. J. Appl. Earth Obs. Geoinf. 2015, 43, 32–42. [Google Scholar] [CrossRef]
- Beatriz, R.D.L.; Crowley, J.K. Spectral reflectance and emissivity features of broad leaf plants: Prospects for remote sensing in the thermal infrared (8.0–14.0 μm). Remote Sens. Environ. 2007, 109, 393–405. [Google Scholar] [CrossRef]
- Bolón-Canedo, V.; Alonso-Betanzos, A. Ensembles for feature selection: A review and future trends. Inf. Fusion 2019, 52, 1–12. [Google Scholar] [CrossRef]
- Huang, L.; Liu, Y.; Huang, W.; Dong, Y.; Ma, H.; Wu, K.; Guo, A. Combining random forest and XGBoost methods in detecting early and mid-term winter wheat stripe rust using canopy level hyperspectral measurements. Agriculture 2022, 12, 74. [Google Scholar] [CrossRef]
- Nagaraju, A.; Mohandas, R. Multifactor Analysis to Predict Best Crop using XgBoost Algorithm. In Proceedings of the 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 3–5 June 2021; pp. 155–163. [Google Scholar] [CrossRef]
- Li, Y.; Zeng, H.; Zhang, M.; Wu, B.; Zhao, Y.; Yao, X.; Cheng, T.; Qin, X.; Wu, F. A county-level soybean yield prediction framework coupled with XGBoost and multidimensional feature engineering. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103269. [Google Scholar] [CrossRef]
- Joshi, A.; Pradhan, B.; Chakraborty, S.; Behera, M.D. Winter wheat yield prediction in the conterminous United States using solar-induced chlorophyll fluorescence data and XGBoost and random forest algorithm. Ecol. Inform. 2023, 77, 102194. [Google Scholar] [CrossRef]
- Aguate, F.M.; Trachsel, S.; Pérez, L.G.; Burgueño, J.; Crossa, J.; Balzarini, M.; de los Campos, G. Use of hyperspectral image data outperforms vegetation indices in prediction of maize yield. Crop Sci. 2017, 57, 2517–2524. [Google Scholar] [CrossRef]
- Zeng, W.Z.; Xu, C.; Zhao, G.; Wu, J.W.; Huang, J. Estimation of sunflower seed yield using partial least squares regression and artificial neural network models. Pedosphere 2018, 28, 764–774. [Google Scholar] [CrossRef]
- Wei, P.; Lu, Z.; Song, J. Variable importance analysis: A comprehensive review. Reliab. Eng. Syst. Saf. 2015, 142, 399–432. [Google Scholar] [CrossRef]
- Ji, Y.; Liu, R.; Xiao, Y.; Cui, Y.; Chen, Z.; Zong, X.; Yang, T. Faba bean above-ground biomass and bean yield estimation based on consumer-grade unmanned aerial vehicle RGB images and ensemble learning. Precis. Agric. 2023, 24, 1439–1460. [Google Scholar] [CrossRef]
- Li, C.; Wang, Y.; Ma, C.; Chen, W.; Li, Y.; Li, J.; Ding, F. Improvement of wheat grain yield prediction model performance based on stacking technique. Appl. Sci. 2021, 11, 12164. [Google Scholar] [CrossRef]
- Pavlyshenko, B. Using stacking approaches for machine learning models. In Proceedings of the 2018 I EEE Second International Conference on Data Stream Mining & Processing (DSMP), Lviv, Ukraine, 21–25 August 2018; pp. 255–258. [Google Scholar] [CrossRef]
- Anh, V.P.; Minh, L.N.; Lam, T.B. Feature weighting and svm parameters optimization based on genetic algorithms for classification problems. Appl. Intell. 2017, 46, 455–469. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, Y.; Gong, C.; Chen, Y.; Yu, H. Applications of deep learning for dense scenes analysis in agriculture: A review. Sensors 2020, 20, 1520. [Google Scholar] [CrossRef] [PubMed]
- Shook, J.; Gangopadhyay, T.; Wu, L.; Ganapathysubramanian, B.; Sarkar, S.; Singh, A.K. Crop yield prediction integrating genotype and weather variables using deep learning. PLoS ONE 2021, 16, e0252402. [Google Scholar] [CrossRef] [PubMed]
- Oikonomidis, A.; Catal, C.; Kassahun, A. Deep learning for figure prediction: A systematic literature review. N. Z. J. Crop Hortic. Sci. 2023, 51, 1–26. [Google Scholar] [CrossRef]
- Van Klompenburg, T.; Kassahun, A.; Catal, C. Crop yield prediction using machine learning: A systematic literature review. Comput. Electron. Agric. 2020, 177, 105709. [Google Scholar] [CrossRef]
Principal Component | Initial Eigenvalues | ||
---|---|---|---|
Eigenvalue | Variance Contribution Ratio (%) | Cumulative Variance Contribution Ratio (%) | |
1 | 19.72 | 49.30 | 49.30 |
2 | 11.13 | 27.80 | 77.10 |
3 | 3.09 | 7.70 | 84.90 |
4 | 1.93 | 4.80 | 89.70 |
5 | 1.54 | 3.80 | 93.50 |
6 | 0.74 | 1.90 | 95.40 |
7 | 0.66 | 1.70 | 97.00 |
8 | 0.38 | 0.90 | 98.00 |
9 | 0.28 | 0.70 | 98.70 |
10 | 0.22 | 0.60 | 99.20 |
11 | 0.15 | 0.40 | 99.60 |
12 | 0.06 | 0.10 | 100.00 |
Sensor | Metric | Base Learner | Secondary Learner | Tertiary Learner | |||||
---|---|---|---|---|---|---|---|---|---|
RF | PLS | RR | KNN | XGboost | StRR | En_FW | En_Mean | ||
RGB | R2 | 0.492 | 0.501 | 0.517 | 0.465 | 0.514 | 0.525 | 0.524 | 0.612 |
RMSE (t ha−1) | 0.848 | 0.841 | 0.827 | 0.871 | 0.830 | 0.820 | 0.821 | 0.818 | |
NRMSE (%) | 8.520 | 8.449 | 8.310 | 8.750 | 8.339 | 8.241 | 8.247 | 8.172 | |
MS | R2 | 0.513 | 0.534 | 0.534 | 0.507 | 0.528 | 0.542 | 0.548 | 0.625 |
RMSE (t ha−1) | 0.853 | 0.834 | 0.834 | 0.858 | 0.839 | 0.827 | 0.821 | 0.822 | |
NRMSE (%) | 8.565 | 8.378 | 8.383 | 8.619 | 8.433 | 8.304 | 8.249 | 8.243 | |
Texture | R2 | 0.579 | 0.592 | 0.592 | 0.539 | 0.593 | 0.605 | 0.596 | 0.678 |
RMSE (t ha−1) | 0.758 | 0.746 | 0.746 | 0.793 | 0.745 | 0.734 | 0.743 | 0.733 | |
NRMSE (%) | 7.617 | 7.498 | 7.498 | 7.963 | 7.487 | 7.374 | 7.459 | 7.384 | |
TIR | R2 | 0.434 | 0.490 | 0.490 | 0.439 | 0.482 | 0.500 | 0.495 | 0.594 |
RMSE (t ha−1) | 0.879 | 0.834 | 0.834 | 0.875 | 0.840 | 0.826 | 0.830 | 0.823 | |
NRMSE (%) | 8.825 | 8.382 | 8.382 | 8.791 | 8.443 | 8.295 | 8.335 | 8.292 | |
RGB + MS | R2 | 0.540 | 0.506 | 0.545 | 0.503 | 0.537 | 0.561 | 0.552 | 0.636 |
RMSE (t ha−1) | 0.825 | 0.854 | 0.820 | 0.857 | 0.827 | 0.806 | 0.814 | 0.805 | |
NRMSE (%) | 8.285 | 8.580 | 8.241 | 8.611 | 8.307 | 8.096 | 8.173 | 8.107 | |
RGB + Texture | R2 | 0.604 | 0.577 | 0.577 | 0.569 | 0.605 | 0.619 | 0.614 | 0.687 |
RMSE (t ha−1) | 0.747 | 0.772 | 0.772 | 0.779 | 0.746 | 0.733 | 0.737 | 0.733 | |
NRMSE (%) | 7.506 | 7.754 | 7.758 | 7.828 | 7.491 | 7.360 | 7.407 | 7.314 | |
RGB + TIR | R2 | 0.554 | 0.557 | 0.560 | 0.548 | 0.561 | 0.575 | 0.580 | 0.657 |
RMSE (t ha−1) | 0.780 | 0.777 | 0.775 | 0.785 | 0.774 | 0.762 | 0.757 | 0.756 | |
NRMSE (%) | 7.839 | 7.806 | 7.786 | 7.889 | 7.772 | 7.650 | 7.602 | 7.620 | |
MS + Texture | R2 | 0.598 | 0.604 | 0.601 | 0.551 | 0.617 | 0.623 | 0.619 | 0.694 |
RMSE (t ha−1) | 0.741 | 0.735 | 0.738 | 0.782 | 0.723 | 0.718 | 0.721 | 0.714 | |
NRMSE (%) | 7.443 | 7.389 | 7.410 | 7.859 | 7.263 | 7.208 | 7.246 | 7.198 | |
MS + TIR | R2 | 0.569 | 0.561 | 0.563 | 0.536 | 0.566 | 0.581 | 0.571 | 0.656 |
RMSE (t ha−1) | 0.772 | 0.780 | 0.778 | 0.801 | 0.775 | 0.762 | 0.770 | 0.763 | |
NRMSE (%) | 7.760 | 7.833 | 7.811 | 8.049 | 7.789 | 7.654 | 7.739 | 7.660 | |
Texture + TIR | R2 | 0.607 | 0.607 | 0.607 | 0.555 | 0.614 | 0.628 | 0.620 | 0.697 |
RMSE (t ha−1) | 0.732 | 0.732 | 0.733 | 0.780 | 0.726 | 0.713 | 0.720 | 0.710 | |
NRMSE (%) | 7.357 | 7.358 | 7.359 | 7.831 | 7.290 | 7.161 | 7.235 | 7.157 | |
RGB + MS + Texture | R2 | 0.615 | 0.590 | 0.614 | 0.577 | 0.613 | 0.639 | 0.627 | 0.702 |
RMSE (t ha−1) | 0.736 | 0.760 | 0.738 | 0.772 | 0.739 | 0.713 | 0.725 | 0.716 | |
NRMSE (%) | 7.396 | 7.638 | 7.412 | 7.755 | 7.421 | 7.163 | 7.281 | 7.146 | |
RGB + MS + TIR | R2 | 0.588 | 0.582 | 0.602 | 0.547 | 0.591 | 0.603 | 0.612 | 0.686 |
RMSE (t ha−1) | 0.750 | 0.755 | 0.737 | 0.786 | 0.747 | 0.736 | 0.728 | 0.723 | |
NRMSE (%) | 7.532 | 7.589 | 7.405 | 7.897 | 7.508 | 7.389 | 7.310 | 7.287 | |
RGB + Texture + TIR | R2 | 0.636 | 0.614 | 0.620 | 0.589 | 0.647 | 0.652 | 0.655 | 0.717 |
RMSE (t ha−1) | 0.718 | 0.739 | 0.733 | 0.738 | 0.707 | 0.702 | 0.698 | 0.696 | |
NRMSE (%) | 7.210 | 7.424 | 7.367 | 7.415 | 7.098 | 7.051 | 7.014 | 7.061 | |
MS + Texture + TIR | R2 | 0.627 | 0.616 | 0.620 | 0.568 | 0.641 | 0.643 | 0.645 | 0.711 |
RMSE (t ha−1) | 0.720 | 0.730 | 0.726 | 0.774 | 0.706 | 0.704 | 0.702 | 0.699 | |
NRMSE (%) | 7.234 | 7.336 | 7.296 | 7.777 | 7.090 | 7.072 | 7.049 | 7.046 | |
RGB + MS + Texture + TIR | R2 | 0.640 | 0.631 | 0.649 | 0.615 | 0.660 | 0.668 | 0.667 | 0.733 |
RMSE (t ha−1) | 0.701 | 0.709 | 0.692 | 0.748 | 0.681 | 0.673 | 0.674 | 0.668 | |
NRMSE (%) | 7.038 | 7.127 | 6.949 | 7.519 | 6.842 | 6.760 | 6.771 | 6.727 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Li, L.; Fei, S.; Yang, M.; Tao, Z.; Meng, Y.; Xiao, Y. Wheat Yield Prediction Using Machine Learning Method Based on UAV Remote Sensing Data. Drones 2024, 8, 284. https://doi.org/10.3390/drones8070284
Yang S, Li L, Fei S, Yang M, Tao Z, Meng Y, Xiao Y. Wheat Yield Prediction Using Machine Learning Method Based on UAV Remote Sensing Data. Drones. 2024; 8(7):284. https://doi.org/10.3390/drones8070284
Chicago/Turabian StyleYang, Shurong, Lei Li, Shuaipeng Fei, Mengjiao Yang, Zhiqiang Tao, Yaxiong Meng, and Yonggui Xiao. 2024. "Wheat Yield Prediction Using Machine Learning Method Based on UAV Remote Sensing Data" Drones 8, no. 7: 284. https://doi.org/10.3390/drones8070284
APA StyleYang, S., Li, L., Fei, S., Yang, M., Tao, Z., Meng, Y., & Xiao, Y. (2024). Wheat Yield Prediction Using Machine Learning Method Based on UAV Remote Sensing Data. Drones, 8(7), 284. https://doi.org/10.3390/drones8070284