Event-Triggered Collaborative Fault Diagnosis for UAV–UGV Systems
Abstract
:1. Introduction
2. Preliminaries
2.1. Overview of UAV–UGV System
2.2. Overview of BLS
2.3. Event-Triggered Mechanism
3. The Event-Triggered Collaborative Fault Diagnosis Method
3.1. Data Pre-Processing
3.2. Event-Triggered Mechanism of UAV–UGV System
3.3. Collaborative Diagnosis of UAV–UGV System
4. Result and Discussion
4.1. Experimental Settings and Datasets
4.2. Analysis of Event-Triggered Detection Results
4.3. Analysis of Fault Diagnosis Results
4.4. Fault Diagnosis Comparison Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, H.; Li, X. Distributed model predictive consensus of heterogeneous time-varying multi-agent systems: With and without self-triggered mechanism. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 5358–5368. [Google Scholar] [CrossRef]
- Shen, Z.; Zhou, G.; Huang, H.; Huang, C.; Wang, Y.; Wang, F. Convex Optimization-Based Trajectory Planning for Quadrotors Landing on Aerial Vehicle Carriers. IEEE Trans. Intell. Veh. 2023, 9, 138–150. [Google Scholar] [CrossRef]
- Deng, C.; Wang, S.; Wang, J.; Xu, Y.; Chen, Z. LiDAR Depth Cluster Active Detection and Localization for a UAV with Partial Information Loss in GNSS. Unmanned Syst. 2024, 1–13. [Google Scholar] [CrossRef]
- Li, W.; Ge, Y.; Guan, Z.; Gao, H.; Feng, H. NMPC-based UAV-USV cooperative tracking and landing. J. Frankl. Inst. 2023, 360, 7481–7500. [Google Scholar] [CrossRef]
- Bao, G.; Ma, L.; Yi, X. Recent advances on cooperative control of heterogeneous multi-agent systems subject to constraints: A survey. Syst. Sci. Control Eng. 2022, 10, 539–551. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, L. Consensus of heterogeneous multi-agent systems without velocity measurements. Int. J. Control 2012, 85, 906–914. [Google Scholar] [CrossRef]
- Ma, M.; Wang, Z. Distributed Offloading for Multi-UAV Swarms in MEC-Assisted 5G Heterogeneous Networks. Drones 2023, 7, 226. [Google Scholar] [CrossRef]
- Liu, K.; Ji, Z.; Xie, G.; Wang, L. Consensus for heterogeneous multi-agent systems under fixed and switching topologies. J. Frankl. Inst. 2015, 352, 3670–3683. [Google Scholar] [CrossRef]
- Cheng, W.; Zhang, K.; Jiang, B.; Ding, S.X. Fixed-time formation tracking for heterogeneous multiagent systems under actuator faults and directed topologies. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 3063–3077. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z. Data-based output synchronization of discrete-time heterogeneous multiagent systems with sensor faults. IEEE Trans. Cybern. 2022, 54, 265–272. [Google Scholar] [CrossRef]
- Guo, L.; Ren, Y.; Li, R.; Jiang, B. Prior Knowledge-Augmented Broad Reinforcement Learning Framework for Fault Diagnosis of Heterogeneous Multiagent Systems. IEEE Trans. Cogn. Dev. Syst. 2023, 16, 115–123. [Google Scholar] [CrossRef]
- Saied, M.; Mahairy, T.; Francis, C.; Shraim, H.; Mazeh, H.; Rafei, M.E. Differential Flatness-Based Approach for Sensors and Actuators Fault Diagnosis of a Multirotor UAV. IFAC-PapersOnLine 2019, 52, 831–836. [Google Scholar] [CrossRef]
- Jiang, B.; Zhang, K.; Shi, P. Integrated fault estimation and accommodation design for discrete-time Takagi–Sugeno fuzzy systems with actuator faults. IEEE Trans. Fuzzy Syst. 2010, 19, 291–304. [Google Scholar] [CrossRef]
- López-Estrada, F.R.; Ponsart, J.C.; Theilliol, D.; Zhang, Y.; Astorga Zaragoza, C.M. LPV model-based tracking control and robust sensor fault diagnosis for a quadrotor UAV. J. Intell. Robot. Syst. 2016, 84, 163–177. [Google Scholar] [CrossRef]
- Jiang, B.; Shen, Q.; Shi, P. Neural-networked adaptive tracking control for switched nonlinear pure-feedback systems under arbitrary switching. Automatica 2015, 61, 119–125. [Google Scholar] [CrossRef]
- Deghat, M.; Lampiri, E. Sensor Anomaly Detection and Recovery in the Roll Dynamics of a Delta-Wing Aircraft via Monte Carlo and Maximum Likelihood Methods. IFAC-PapersOnLine 2017, 50, 12791–12796. [Google Scholar]
- Zhang, K.; Jiang, B.; Shi, P. Adjustable parameter-based distributed fault estimation observer design for multiagent systems with directed graphs. IEEE Trans. Cybern. 2016, 47, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Jiang, B.; Patton, R.J.; Zhang, K. Hierarchical-structure-based fault estimation and fault-tolerant control for multiagent systems. IEEE Trans. Control Netw. Syst. 2018, 6, 586–597. [Google Scholar] [CrossRef]
- Zhu, J.W.; Yang, G.H. Robust distributed fault estimation for a network of dynamical systems. IEEE Trans. Control Netw. Syst. 2016, 5, 14–22. [Google Scholar] [CrossRef]
- Han, J.; Liu, X.; Gao, X.; Wei, X. Intermediate observer-based robust distributed fault estimation for nonlinear multiagent systems with directed graphs. IEEE Trans. Ind. Inform. 2019, 16, 7426–7436. [Google Scholar] [CrossRef]
- Munawir, M.; Agustini, D.R.; Rahmawati, R.; Anzhar, A.M.N. Machine diagnosis based multi-agent technology by autonomous sensor with energy harvesting. Journal of Computer Engineering. Electron. Inf. Technol. 2022, 1, 14–21. [Google Scholar]
- Lu, X.; Liu, X.; Li, B.; Zhong, J. Data-driven state prediction and sensor fault diagnosis for multi-agent systems with application to a twin rotational inverted pendulu. Processes 2021, 9, 1505. [Google Scholar] [CrossRef]
- El Koujok, M.; Ragab, A.; Amazouz, M. A multi-agent approach based on machine-learning for fault diagnosis. IFAC-PapersOnLine 2019, 52, 103–108. [Google Scholar] [CrossRef]
- Zhang, D.; Feng, G.; Shi, Y.; Srinivasan, D. Physical safety and cyber security analysis of multi-agent systems: A survey of recent advances. IEEE/CAA J. Autom. Sin. 2021, 8, 319–333. [Google Scholar] [CrossRef]
- Li, J.; Yu, T.; Yang, B. A data-driven output voltage control of solid oxide fuel cell using multi-agent deep reinforcement learning. Appl. Energy 2021, 304, 117541. [Google Scholar] [CrossRef]
- Wang, C.; Lu, N.; Cheng, Y.; Jiang, B. A data-driven aero-engine degradation prognostic strategy. IEEE Trans. Cybern. 2019, 51, 1531–1541. [Google Scholar] [CrossRef]
- Louati, F.; Ktata, F.B. A deep learning-based multi-agent system for intrusion detection. SN Appl. Sci. 2020, 2, 675. [Google Scholar] [CrossRef]
- Guo, L.; Li, R.; Jiang, B. Fault detection and diagnosis using statistic feature and improved broad learning for traction systems in high-speed trains. IEEE Trans. Artif. Intell. 2022, 4, 679–688. [Google Scholar] [CrossRef]
- Lu, N.; Jiang, B.; Meng, X.; Zhao, H. Diagnosis, diagnosticability analysis, and test point design for multiple faults based on multisignal modeling and blind source separation. IEEE Trans. Syst. Man Cybern. Syst. 2017, 50, 137–148. [Google Scholar] [CrossRef]
- Al-Haddad, L.A.; Jaber, A.A. An intelligent fault diagnosis approach for multirotor UAVs based on deep neural network of multi-resolution transform features. Drones 2023, 7, 82. [Google Scholar] [CrossRef]
- Yang, P.; Geng, H.; Wen, C.; Liu, P. An intelligent quadrotor fault diagnosis method based on novel deep residual shrinkage network. Drones 2021, 5, 133. [Google Scholar] [CrossRef]
- Guo, L.; Li, R.; Jiang, B. A data-driven long time-series electrical line trip fault prediction method using an improved stacked-informer network. Sensors 2021, 21, 4466. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Ouyang, M.; Chen, Z.; Chen, D.; Liu, S. A deep transfer learning fault diagnosis method based on WGAN and minimum singular value for non-homologous bearing. IEEE Trans. Instrum. Meas. 2022, 71, 1–9. [Google Scholar] [CrossRef]
- Chen, C.L.P.; Liu, Z. Broad learning system: An effective and efficient incremental learning system without the need for deep architecture. IEEE Trans. Neural Netw. Learn. Syst. 2017, 29, 10–24. [Google Scholar] [CrossRef]
- Li, R.Z.; Jiang, B.; Yu, Z.; Lu, N. Data-driven fault detection and diagnosis for UAV swarms. J. Beijing Univ. Aeronaut. Astronaut. 2024, 50, 1586–1592. [Google Scholar]
- Zhao, X.; He, Z.; Zhang, S.; Liang, D. A sparse-representation-based robust inspection system for hidden defects classification in casting components. Neurocomputing 2015, 153, 1–10. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
Method | SAE | SVM | BLS | The Proposed Method |
---|---|---|---|---|
UAVs | 86.93% | 93.62% | 90.33% | 94.85% |
UGVs | 88.89% | 93.03% | 95.46% | 97.62% |
UAV–UGV systems | 87.91% | 93.32% | 92.89% | 96.23% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Jiang, B.; Zong, Y.; Lu, N.; Guo, L. Event-Triggered Collaborative Fault Diagnosis for UAV–UGV Systems. Drones 2024, 8, 324. https://doi.org/10.3390/drones8070324
Li R, Jiang B, Zong Y, Lu N, Guo L. Event-Triggered Collaborative Fault Diagnosis for UAV–UGV Systems. Drones. 2024; 8(7):324. https://doi.org/10.3390/drones8070324
Chicago/Turabian StyleLi, Runze, Bin Jiang, Yan Zong, Ningyun Lu, and Li Guo. 2024. "Event-Triggered Collaborative Fault Diagnosis for UAV–UGV Systems" Drones 8, no. 7: 324. https://doi.org/10.3390/drones8070324
APA StyleLi, R., Jiang, B., Zong, Y., Lu, N., & Guo, L. (2024). Event-Triggered Collaborative Fault Diagnosis for UAV–UGV Systems. Drones, 8(7), 324. https://doi.org/10.3390/drones8070324