Assessment of LiDAR-Based Sensing Technologies in Bird–Drone Collision Scenarios
Abstract
:1. Introduction
2. Materials and Methods
2.1. Operational Scenarios and Trajectory Simulation
2.2. Three-Dimensional Models
2.3. LiDAR Simulator
2.4. Performance Metrics
- is the bird geometric center at discretization point i. For the calculations, the STL geometric center is employed.
- is the estimated position at discretization point i.
- represent the real and estimated bird speed, respectively.
- and are the position and velocity estimation errors, respectively.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- González-Jorge, H.; Martínez-Sánchez, J.; Bueno, M.; Arias, P. Unmanned aerial systems for civil applications: A review. Drones 2017, 1, 2. [Google Scholar] [CrossRef]
- Rodríguez, D.A.; Lozano Tafur, C.; Melo Daza, P.F.; Villalba Vidales, K.A.; Daza Rincón, J.C. Inspection of aircrafts and airports using UAS: A review. Results Eng. 2024, 22, 102330. [Google Scholar] [CrossRef]
- Turner, I.L.; Harley, M.D.; Drummond, C.D. UAVs for coastal surveying. Coast. Eng. 2016, 114, 19–24. [Google Scholar] [CrossRef]
- Mogili, U.R.; Deepak, B.B.V.L. Review on application of drone system in precision agriculture. Procedia Comput. Sci. 2018, 133, 502–509. [Google Scholar] [CrossRef]
- Tang, L.; Shao, G. Drone remote sensing for forestry research practices. J. For. Res. 2015, 26, 791–797. [Google Scholar] [CrossRef]
- Koslowski, R.; Schulzke, M. Drones along borders: Border security UAV in the United States and the European Union. Int. Stud. Perspect. 2018, 19, 305–324. [Google Scholar] [CrossRef]
- Kunertova, D. The war in Ukraine shows the game-changing effects of drones depends on the game. Bull. At. Sci. 2023, 79, 95–102. [Google Scholar] [CrossRef]
- Garrow, L.A.; German, B.J.; Leonard, C.E. Urban air mobility: A comprehensive review and comparative analysis with autonomous and electric ground transportation for informing future research. Transp. Res. Part C Emerg. Technol. 2021, 132, 103377. [Google Scholar] [CrossRef]
- Rajedran, S.; Srinivas, S. Air taxi for urban mobility: A critical review of recent developments, future challenges, and opportunities. Transp. Res. Part E Logist. Transp. Rev. 2020, 143, 102090. [Google Scholar] [CrossRef]
- Barrado, C.; Boyero, M.; Brucculeri, L.; Ferrara, G.; Hately, A.; Hullah, P.; Martín-Marrero, D.; Pastor, E.; Rushton, A.P.; Volert, A. U-space concept of operations: A key enabler for opening airspace to emerging low-altitude operations. Aerospace 2020, 7, 24. [Google Scholar] [CrossRef]
- Doole, M.; Ellerbroek, J.; Hoekstra, J. Estimation of traffic density from drone-based delivery in very low level urban airspace. J. Air Transp. Manag. 2020, 88, 101862. [Google Scholar] [CrossRef]
- Alharbi, A.; Poujade, A.; Malandrakis, K.; Petrunin, I.; Panagiotakopulos, D.; Tsourdos, A. Rule-based conflicto management for unmanned traffic management scenarios. In Proceedings of the 2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC), San Antonio, TX, USA, 11–15 October 2020. [Google Scholar]
- Jover, J.; Bermúdez, A.; Casado, R. A tactical conflict resolution proposal for u-space zu airspace volumes. Sensors 2021, 21, 5649. [Google Scholar] [CrossRef]
- Jamil, S.; Abbas, M.S.; Roy, A.M. Distinguishing malicious drones using vision transformer. AI 2022, 3, 260–273. [Google Scholar] [CrossRef]
- Suneetha, G.; Arun, R.K.P. A collaborative lightweight malicious drone detection system in sensitive areas. In Proceedings of the 2023 IEEE International Conference on Advanced Networks and Telecommunications Systems, Jaipur, India, 17–20 December 2023. [Google Scholar]
- Ritchie, M.; Fioranelli, F.; Griffiths, H.; Torvik, B. Monostatic and bistatic radar measurements of birds and micro-drone. In Proceedings of the 2016 IEEE Radar Conference, Philadelphia, PA, USA, 2–6 May 2016. [Google Scholar]
- Rahman, S.; Robertson, D.A. Classification of drones and birds using convolutional neural networks applied to radar micro-Doppler spectrogram images. IET Radar Sonar Navig. 2020, 14, 653–661. [Google Scholar] [CrossRef]
- Lyons, M.; Brandis, K.; Callaghan, C.; McCann, J.; Mills, C.; Ryall, S.; Kingsford, R. Bird interactions with drones, from individuals to large colonies. Aust. Field Ornithol. 2018, 35, 51–56. [Google Scholar] [CrossRef]
- Pedro, D.; Matos-Carvalho, J.P.; Fonseca, J.M.; Mora, A. Collision avoidance on unmanned aerial vehicles using neural network pipelines and flow clustering techniques. Remote Sens. 2021, 13, 2643. [Google Scholar] [CrossRef]
- Panchal, I.; Metz, I.C.; Ribeiro, M.; Armanini, S.F. Urban air traffic management for collision avoidance with non-cooperative airspace users. In Proceedings of the RD Congress of the International Council of the Aeronautical Sciences, Stockholm, Sweden, 4–9 September 2022; Available online: https://www.icas.org/ICAS_ARCHIVE/ICAS2022/data/papers/ICAS2022_0567_paper.pdf (accessed on 9 September 2024).
- Xiao, J.; Feroskhan, M. Learning multi-pursuit evasion for safe targeted navigation of drones. IEEE Trans. Artif. Intell. 2024, 5, 6210–6224. [Google Scholar] [CrossRef]
- Onifade, T.; Eldash, O.; Bayoumi, M. An optimized object detection algorithm for unmanned aerial vehicles (UAVs). In Proceedings of the IEEE World Forum on Internet of Things, Aveiro, Portugal, 12–27 October 2023; pp. 1–7. [Google Scholar]
- Behroozpour, B.; Sandborn, P.A.M.; Wu, M.C.; Boser, B.E. LiDAR system architectures and circuits. IEEE Commun. Mag. 2017, 55, 135–142. [Google Scholar] [CrossRef]
- Aoyama, Y.; Alvarez Leon, J.F. Urban governance and autonomous vehicles. Cities 2021, 119, 103410. [Google Scholar] [CrossRef]
- Cugurullo, F.; Caprotti, F.; Cook, M.; Karvonen, A.; McGuirk, P.; Marvin, S. Artificial Intelligence and the city. In Urbanistic Perspectives on AI; Routledge: London, UK, 2023. [Google Scholar]
- Cugurullo, F. New stories of urban AI: Exploring the artificial intelligence-city nexus beyond Frankenstein Urbanism. Urban Geogr. 2024, 45, 1300–1307. [Google Scholar] [CrossRef]
- Jackman, A. AI urbanism and feminist geopolitics: Making space for diverse practices, actors and agencies. Urban Geogr. 2024, 45, 1292–1296. [Google Scholar] [CrossRef]
- MatLAB Software. Available online: https://www.mathworks.com/products/matlab.html (accessed on 9 September 2024).
- DJI Matrice 350. Available online: https://enterprise.dji.com/es/matrice-350-rtk (accessed on 9 September 2024).
- DJI Phantom. Available online: https://www.dji.com/es/products/phantom (accessed on 9 September 2024).
- CGTrader Website, Game Ready Bird Collection. Available online: https://www.cgtrader.com/free-3d-models/animals/bird/game-ready-bird-collection (accessed on 9 September 2024).
- Bird ID, Easy Bird Identification. Available online: https://www.birdid.co.uk/IdentifyBird.aspx (accessed on 9 September 2024).
- Warrick, D.R.; Dial, K.P. Kinematic, Aerodynamic and Anatomical Mechanisms in the Slow, Maneuvering Flight of Pigeons. J. Exp. Biol. 1998, 201, 655–672. [Google Scholar] [CrossRef] [PubMed]
- Aldao, E.; González-deSantos, L.M.; González-Jorge, H. LiDAR based detect and avoid system for UAV navigation in UAM corridors. Drones 2022, 6, 185. [Google Scholar] [CrossRef]
- Aldao, E.; Veiga-López, F.; González-deSantos, L.M.; Gonzalez-Jorge, H. Enhancing UAV classification with synthetic data: GMM LiDAR simulator for aerial surveillance applications. IEEE Sens. J. 2024, 24, 26960–26970. [Google Scholar] [CrossRef]
- Livox Avia. Available online: https://www.livoxtech.com/avia/specs (accessed on 9 September 2024).
Pigeon | Falcon | Seagull | |
---|---|---|---|
Wingspan (m) | 0.62–0.72 | 0.89–1.13 | 1.3–1.6 |
Maximum speed (m/s) | 14 | 27 | 17 |
Model | Livox Avia |
---|---|
Laser wavelength | 905 nm |
Laser safety | Class 1 |
Detection range | 190 m @ 10% reflectivity 230 m @ 20% reflectivity 320 m @ 80% reflectivity |
Field of view (FOV) | 70.4° H × 77.2° V (non-repetitive scanning) 70.4° H × 4.5° V (repetitive line scanning) |
Range precision | 2 cm |
Angular precision | <0.05° |
Beam divergence | 0.28° V × 0.03° H |
Point rate | 240,000 points/s (first or strongest return) 480,000 points/s (dual return) 720,000 points/s (triple return) |
Power supply voltage range | 10~15 V DC (with Converter 2.0: 9~30 V DC) |
Dimensions | 91 × 61.2 × 64.8 mm |
Weight | 498 g (without cables) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seoane, P.; Aldao, E.; Veiga-López, F.; González-Jorge, H. Assessment of LiDAR-Based Sensing Technologies in Bird–Drone Collision Scenarios. Drones 2025, 9, 13. https://doi.org/10.3390/drones9010013
Seoane P, Aldao E, Veiga-López F, González-Jorge H. Assessment of LiDAR-Based Sensing Technologies in Bird–Drone Collision Scenarios. Drones. 2025; 9(1):13. https://doi.org/10.3390/drones9010013
Chicago/Turabian StyleSeoane, Paula, Enrique Aldao, Fernando Veiga-López, and Higinio González-Jorge. 2025. "Assessment of LiDAR-Based Sensing Technologies in Bird–Drone Collision Scenarios" Drones 9, no. 1: 13. https://doi.org/10.3390/drones9010013
APA StyleSeoane, P., Aldao, E., Veiga-López, F., & González-Jorge, H. (2025). Assessment of LiDAR-Based Sensing Technologies in Bird–Drone Collision Scenarios. Drones, 9(1), 13. https://doi.org/10.3390/drones9010013