Towards Mobile Wind Measurements Using Joust Configured Ultrasonic Anemometer for Applications in Gas Flux Quantification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Site
2.2. Aerial-Based Sampling Approach
2.3. Ground-Based Sampling Approach
2.3.1. Tower
2.3.2. AirMar
2.4. Data Post-Processing
2.4.1. sUAS Corrections
2.4.2. Filtering
3. Results
3.1. AirMar vs. Tower
3.2. TriSonica vs. Tower
- the AirMar measurement has a median wind speed error of 23% and wind direction error of ;
- the TriSonica wind speed errors are very similar between when the data are not corrected (NC, 36%) and the three corrections (C1–C3; 36%, 45%, and 45%, respectively);
- the TriSonica wind direction error for the NC and C1 cases have the highest median values ( and , respectively) and variability with respect to outliers (from to ).
- The N-S median TriSonica (all correction levels) and AirMar wind speed data, both with and without filtering, are very similar, with values ranging from 18 to 30%;
- The E-W median value of the AirMar, 21–23%, is substantially lower than any of the TriSonica corrected data, both with and without filtering (50–55%);
- The unfiltered N-S and E-W flights have considerably more outliers compared to filtered data. The AirMar data also show some outliers in the unfiltered case, however not at the magnitude of the TriSonica data.
- The N-S and E-W median wind direction values for the NC and C1 cases (both filtered and unfiltered) show little similarity to the Tower or AirMar data.
- The N-S wind direction median values for the C2 and C3 unfiltered cases, and C3, , respectively, show large increases in error.
- The N-S wind direction median values for the C2 and C3 filtered values, and , respectively, show large decreases in error compared to unfiltered values.
- The E-W wind direction median values for the C2 and C3 unfiltered cases, and , respectively, show similar error compared to the AirMar () but contain more variability (– versus –, respectively).
- The variability for filtered C2 and C3 E-W wind directions (–) is much smaller than the unfiltered cases for C2 and C3 (–). The filtered C2 and C3 values are similar to those of the AirMar (–).
4. Discussion
4.1. Effects of Separation on Wind Data
4.2. Filtering and Correcting Aerial Data
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
C# | Correction number |
E-W | East–west |
GHG | Greenhouse gas |
GPS | Global positioning system |
IMU | Inertial measurement unit |
IPCC | Intergovernmental Panel on Climate Change |
M600 | Matrice 600 |
NC | No correction |
N-S | North–south |
OTM | Other test method |
sUAS | Small uncrewed aircraft system |
References
- Lee, H.; Romero, J. (Eds.) IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2023; 184p. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2021; U.S. Environmental Protection Agency: Washington, DC, USA, 2023.
- Burgués, J.; Marco, S. Environmental chemical sensing using small drones: A review. Sci. Total Environ. 2020, 748, 141172. [Google Scholar] [CrossRef]
- Zhu, Z.; González-Rocha, J.; Ding, Y.; Frausto-Vicencio, I.; Heerah, S.; Venkatram, A.; Dubey, M.; Collins, D.; Hopkins, F. Toward on-demand measurements of greenhouse gas emissions using an uncrewed aircraft Aircore system. EGUsphere 2023, 2023, 1–23. [Google Scholar] [CrossRef]
- Leitner, S.; Feichtinger, W.; Mayer, S.; Mayer, F.; Krompetz, D.; Hood-Nowotny, R.; Watzinger, A. UAV-based sampling systems to analyse greenhouse gases and volatile organic compounds encompassing compound-specific stable isotope analysis. Atmos. Meas. Tech. 2023, 16, 513–527. [Google Scholar] [CrossRef]
- Gullett, B.; Aurell, J.; Mitchell, W.; Richardson, J. Use of an unmanned aircraft system to quantify NOx emissions from a natural gas boiler. Atmos. Meas. Tech. 2021, 14, 975–981. [Google Scholar] [CrossRef] [PubMed]
- Hollenbeck, D.; Zulevic, D.; Chen, Y. Advanced leak detection and quantification of methane emissions using suas. Drones 2021, 5, 117. [Google Scholar] [CrossRef]
- Yang, S.; Talbot, R.W.; Frish, M.B.; Golston, L.M.; Aubut, N.F.; Zondlo, M.A.; Gretencord, C.; McSpiritt, J. Natural Gas Fugitive Leak Detection Using an Unmanned Aerial Vehicle: Measurement System Description and Mass Balance Approach. Atmosphere 2018, 9, 383. [Google Scholar] [CrossRef]
- Corbett, A.; Smith, B. A study of a miniature TDLAS system onboard two unmanned aircraft to independently quantify methane emissions from oil and gas production assets and other industrial emitters. Atmosphere 2022, 13, 804. [Google Scholar] [CrossRef]
- Smith, B.; Buckingham, S.; Touzel, D.; Corbett, A.; Tavner, C. Development of Methods for Top-Down Methane Emission Measurements of Oil and Gas Facilities in an Offshore Environment Using a Miniature Methane Spectrometer and Long-Endurance UAS. In Proceedings of the SPE Annual Technical Conference and Exhibition, SPE, Dubai, United Arab Emirates, 21–23 September 2021; p. D031S047R006. [Google Scholar]
- Environmental Protection Agency. Other Test Method 51 (OTM-51)—UAS Application of Method 21 for Surface Emission Monitoring of Landfills. 2022. Available online: https://www.epa.gov/system/files/documents/2022-12/OTM%2051-%20UAS%20Application%20of%20Method%2021%20for%20Surface%20Emission%20Monitoring%20of%20Landfills.pdf (accessed on 12 March 2024).
- Olaguer, E.P.; Jeltema, S.; Gauthier, T.; Jermalowicz, D.; Ostaszewski, A.; Batterman, S.; Xia, T.; Raneses, J.; Kovalchick, M.; Miller, S.; et al. Landfill Emissions of Methane Inferred from Unmanned Aerial Vehicle and Mobile Ground Measurements. Atmosphere 2022, 13, 983. [Google Scholar] [CrossRef]
- Abichou, T.; Bel Hadj Ali, N.; Amankwah, S.; Green, R.; Howarth, E.S. Using Ground-and Drone-Based Surface Emission Monitoring (SEM) Data to Locate and Infer Landfill Methane Emissions. Methane 2023, 2, 440–451. [Google Scholar] [CrossRef]
- Hintsa, E.J.; Moore, F.L.; Hurst, D.F.; Dutton, G.S.; Hall, B.D.; Nance, J.D.; Miller, B.R.; Montzka, S.A.; Wolton, L.P.; McClure-Begley, A.; et al. UAS Chromatograph for Atmospheric Trace Species (UCATS)—A versatile instrument for trace gas measurements on airborne platforms. Atmos. Meas. Tech. 2021, 14, 6795–6819. [Google Scholar] [CrossRef]
- Wu, C.; Liu, B.; Wu, D.; Yang, H.; Mao, X.; Tan, J.; Liang, Y.; Sun, J.Y.; Xia, R.; Sun, J.; et al. Vertical profiling of black carbon and ozone using a multicopter unmanned aerial vehicle (UAV) in urban Shenzhen of South China. Sci. Total Environ. 2021, 801, 149689. [Google Scholar] [CrossRef] [PubMed]
- Tsunogai, U.; Shingubara, R.; Morishita, Y.; Ito, M.; Nakagawa, F.; Yoshikawa, S.; Utsugi, M.; Yokoo, A. Sampling Volcanic Plume Using a Drone-Borne SelPS for Remotely Determined Stable Isotopic Compositions of Fumarolic Carbon Dioxide. Front. Earth Sci. 2022, 10. [Google Scholar] [CrossRef]
- Galle, B.; Arellano, S.; Bobrowski, N.; Conde, V.; Fischer, T.P.; Gerdes, G.; Gutmann, A.; Hoffmann, T.; Itikarai, I.; Krejci, T.; et al. A multi-purpose, multi-rotor drone system for long-range and high-altitude volcanic gas plume measurements. Atmos. Meas. Tech. 2021, 14, 4255–4277. [Google Scholar] [CrossRef]
- Rea-Downing, G.; Bouligand, C.; Glen, J.; Earney, T.; Zielinski, L.; Anderson, J.E.; Kelly, P. Development of small uncrewed aerial systems for multi-instrument geophysical data acquisition in active geothermal systems. In Proceedings of the Summit on Drone Geophysics; Society of Exploration Geophysicists: Houston, TX, USA, 2023. [Google Scholar]
- Aurell, J.; Gullett, B.; Holder, A.; Kiros, F.; Mitchell, W.; Watts, A.; Ottmar, R. Wildland fire emission sampling at Fishlake National Forest, Utah using an unmanned aircraft system. Atmos. Environ. 2021, 247, 118193. [Google Scholar] [CrossRef] [PubMed]
- Keerthinathan, P.; Amarasingam, N.; Hamilton, G.; Gonzalez, F. Exploring unmanned aerial systems operations in wildfire management: Data types, processing algorithms and navigation. Int. J. Remote Sens. 2023, 44, 5628–5685. [Google Scholar] [CrossRef]
- Manies, K.; Yates, E.; Christensen, L.; Kolyer, R.; Euskirchen, E.; Waldrop, M. Can a drone equipped with a miniature methane sensor determine methane fluxes from an Alaskan wetland? In Proceedings of the AGU Fall Meeting Abstracts, Washington, DC, USA, 10–14 December 2018; p. B41H-2809. [Google Scholar]
- Hollenbeck, D.; Manies, K.; Chen, Y.; Baldocchi, D.D.; Euskirchen, E.S.; Christensen, L. Evaluating a UAV-based mobile sensing system designed to quantify ecosystem-based methane. In Proceedings of the AGU Fall Meeting Abstracts, Online, 1–17 December 2020; p. A115-0007. [Google Scholar]
- Morales, R.; Ravelid, J.; Vinkovic, K.; Korbeń, P.; Tuzson, B.; Emmenegger, L.; Chen, H.; Schmidt, M.; Humbel, S.; Brunner, D. Controlled-release experiment to investigate uncertainties in UAV-based emission quantification for methane point sources. Atmos. Meas. Tech. 2022, 15, 2177–2198. [Google Scholar] [CrossRef]
- EPA. Draft Other Test Method 33A: Geospatial Measurement of Air Pollution, Remote Emissions Quantification—Direct Assessment (GMAP-REQ-DA). Environmental Protection Agency (EPA). 2014. Available online: https://www3.epa.gov/ttnemc01/prelim/otm33a.pdf (accessed on 21 January 2025).
- Hollenbeck, D.; Nunez, G.; Christensen, L.E.; Chen, Y. Wind measurement and estimation with small unmanned aerial systems (suas) using on-board mini ultrasonic anemometers. In Proceedings of the 2018 International Conference on Unmanned Aircraft Systems (ICUAS), Dallas, TX, USA, 12–15 June 2018; pp. 285–292. [Google Scholar]
- Thielicke, W.; Hübert, W.; Müller, U.; Eggert, M.; Wilhelm, P. Towards accurate and practical drone-based wind measurements with an ultrasonic anemometer. Atmos. Meas. Tech. 2021, 14, 1303–1318. [Google Scholar] [CrossRef]
- Prudden, S.; Fisher, A.; Marino, M.; Mohamed, A.; Watkins, S.; Wild, G. Measuring wind with small unmanned aircraft systems. J. Wind. Eng. Ind. Aerodyn. 2018, 176, 197–210. [Google Scholar] [CrossRef]
- Brenner, J. Inflow Analysis for Multi-Rotors and the Impact on Sensor Placement. Master’s Thesis, Oklahoma State University, Stillwater, OK, USA, 2019. [Google Scholar]
- González-Rocha, J.; Woolsey, C.A.; Sultan, C.; De Wekker, S.F. Sensing wind from quadrotor motion. J. Guid. Control. Dyn. 2019, 42, 836–852. [Google Scholar] [CrossRef]
- Abichandani, P.; Lobo, D.; Ford, G.; Bucci, D.; Kam, M. Wind Measurement and Simulation Techniques in Multi-Rotor Small Unmanned Aerial Vehicles. IEEE Access 2020, 8, 54910–54927. [Google Scholar] [CrossRef]
- Chiew, J.; Aftosmis, M.; Manies, K.L. Medium-Fidelity CFD Modeling of Multicopter Wakes for Airborne Sensor Measurements. In Proceedings of the 78th Annual Vertical Flight Society Forum and Technology Display, Fort Worth, TX, USA, 10–12 May 2022. [Google Scholar]
- Manies, K.L.; Jones, M.C.; Waldrop, M.P.; Leewis, M.C.; Fuller, C.; Cornman, R.S.; Hoefke, K. Influence of Permafrost Type and Site History on Losses of Permafrost Carbon After Thaw. J. Geophys. Res. Biogeosci. 2021, 126, e2021JG006396. [Google Scholar] [CrossRef]
- Euskirchen, E.S.; Edgar, C.W.; Turetsky, M.R.; Waldrop, M.P.; Harden, J.W. Differential response of carbon fluxes to climate in three peatland ecosystems that vary in the presence and stability of permafrost. J. Geophys. Res. Biogeosci. 2014, 119, 1576–1595. [Google Scholar] [CrossRef]
- Burgués, J.; Marco, S. Drone-based monitoring of environmental gases. In Air Quality Networks: Data Analysis, Calibration & Data Fusion; Springer: Cham, Switzerland, 2023; pp. 115–137. [Google Scholar]
- Asher, E.; Hills, A.J.; Hornbrook, R.S.; Shertz, S.; Gabbard, S.; Stephens, B.B.; Helmig, D.; Apel, E.C. Unpiloted aircraft system instrument for the rapid collection of whole air samples and measurements for environmental monitoring and air quality studies. Environ. Sci. Technol. 2021, 55, 5657–5667. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.; John, G.; Stark, B.; Christensen, L.E.; Chen, Y. Applicability of unmanned aerial systems for leak detection. In Proceedings of the 2016 International Conference on Unmanned Aircraft Systems (ICUAS), Arlington, VA, USA, 7–10 June 2016; pp. 1220–1227. [Google Scholar]
- Donnell, G.W.; Feight, J.A.; Lannan, N.; Jacob, J.D. Wind characterization using onboard IMU of sUAS. In Proceedings of the 2018 Atmospheric Flight Mechanics Conference, Atlanta, GA, USA, 25–29 June 2018; p. 2986. [Google Scholar]
Flight Number | Avg Tower (Filt) | Std Tower (Filt) | Avg Tower (Raw) | Std Tower (Raw) |
---|---|---|---|---|
f1 | 2.53 | 0.47 | 2.97 | 0.90 |
f2 | 1.34 | 0.74 | 2.84 | 0.89 |
f3 | 2.04 | 0.69 | 1.76 | 0.69 |
f4 | 1.28 | 0.41 | 1.16 | 0.45 |
f5 | 1.70 | 0.52 | 1.33 | 0.68 |
f6 | 1.01 | 0.68 | 1.14 | 0.52 |
f7 | 1.84 | 0.29 | 1.96 | 0.46 |
f8 | 2.13 | 0.44 | 1.69 | 0.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hollenbeck, D.; Edgar, C.; Euskirchen, E.; Manies, K. Towards Mobile Wind Measurements Using Joust Configured Ultrasonic Anemometer for Applications in Gas Flux Quantification. Drones 2025, 9, 94. https://doi.org/10.3390/drones9020094
Hollenbeck D, Edgar C, Euskirchen E, Manies K. Towards Mobile Wind Measurements Using Joust Configured Ultrasonic Anemometer for Applications in Gas Flux Quantification. Drones. 2025; 9(2):94. https://doi.org/10.3390/drones9020094
Chicago/Turabian StyleHollenbeck, Derek, Colin Edgar, Eugenie Euskirchen, and Kristen Manies. 2025. "Towards Mobile Wind Measurements Using Joust Configured Ultrasonic Anemometer for Applications in Gas Flux Quantification" Drones 9, no. 2: 94. https://doi.org/10.3390/drones9020094
APA StyleHollenbeck, D., Edgar, C., Euskirchen, E., & Manies, K. (2025). Towards Mobile Wind Measurements Using Joust Configured Ultrasonic Anemometer for Applications in Gas Flux Quantification. Drones, 9(2), 94. https://doi.org/10.3390/drones9020094