Solid State Recycling of Aluminum Alloy Chips via Pulsed Electric Current Sintering
Abstract
:1. Introduction
Pulsed Electric Current Sintering (PECS)
- Activation and refining of the powder
- Formation of sintering necks
- Growth of sintering necks
- Densification through plastic deformation
2. Materials and Methods
2.1. Cleansing
2.2. Compaction
2.3. Consolidation
2.4. Evaluation
3. Results
3.1. Compaction
3.2. Pulsed Electric Current Sintering
3.2.1. Density Measurements
3.2.2. Light Optical Microscopy
3.2.3. Hardness Measurements
4. Discussion
5. Conclusions and Outlook
- Sorting, storage and cleansing of the chips is a key factor for successful solid state recycling, to prevent impurities and enable metallic bonding.
- PECS achieves optical as well as measurable improvements in density and hardness compared to only pre-compacted briquettes specimens proving more superior bonding after sintering.
- Final density of specimens pre-compacted above 320 MPa reaches similar levels after sintering even with different systems used.
- Increased temperature, pressure and therefore deformation result in higher quality bonding amongst individual chips.
- Inhomogeneity within specimens due to the chips morphology and the pre-compaction process lead to a partial delamination of the chips during heat treatment.
- Pre-compaction should be carried out on double-acting presses to prevent a density gradient within the briquettes and leading to a more homogenous starting material, enabling more uniform consolidation during PECS.
- Further optimization of process parameters may deliver a more suitable processing cycle, leading to superior bonding and desired material properties, and possibly preventing delamination effects.
- A combination of PECS with a deformation-based process may be used to additionally enhance bonding.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Paraskevas, D.; Kellens, K.; Dewulf, W.; Duflou, J.R. Environmental modelling of aluminium recycling: A Life Cycle Assessment tool for sustainable metal management. J. Clean. Prod. 2015, 105, 357–370. [Google Scholar] [CrossRef]
- Rombach, G. Raw material supply by aluminium recycling—Efficiency evaluation and long-term availability. Acta Mater. 2013, 61, 1012–1020. [Google Scholar] [CrossRef]
- Castro, M.B.G.; Remmerswaal, J.A.M.; Reuter, M.A.; Boin, U.J.M. A thermodynamic approach to the compatibility of materials combinations for recycling. Resour. Conserv. Recycl. 2004, 43, 1–19. [Google Scholar] [CrossRef]
- Amini, S.H.; Remmerswaal, J.A.M.; Castro, M.B.G.; Reuter, M.A. Quantifying the quality loss and resource efficiency of recycling by means of exergy analysis. J. Clean. Prod. 2007, 15, 907–913. [Google Scholar] [CrossRef]
- Nakamura, S.; Kondo, Y.; Matsubae, K.; Nakajima, K.; Tasaki, T.; Nagasaka, T. Quality- and dilution losses in the recycling of ferrous materials from end-of-life passenger cars: Input-output analysis under explicit consideration of scrap quality. Environ. Sci. Technol. 2012, 46, 9266–9273. [Google Scholar] [CrossRef] [PubMed]
- Cislo, C.N.; Fazokas, T.; Buchmayr, B.; Weiß, C. Prozessanalyse zum ressourcenschonenden Recycling von Spanschrotten aus der Aluminiumverarbeitung. In Konferenzband zur 14. Recy & DepoTech-Konferenz: Recycling & Abfallverwertung, Abfallwirtschaft & Ressourcenmanagement Sowie Deponietechnik & Altlasten; Eigenverlag des Lehrstuhls für Abfallverwertungstechnik & Abfallwirtschaft: Leoben, Austria, 2018; pp. 231–238. [Google Scholar]
- Duflou, J.R.; Tekkaya, A.E.; Haase, M.; Welo, T.; Vanmeensel, K.; Kellens, K.; Dewulf, W.; Paraskevas, D. Environmental assessment of solid state recycling routes for aluminium alloys: Can solid state processes significantly reduce the environmental impact of aluminium recycling? Cirp Ann.-Manuf. Technol. 2015, 64, 37–40. [Google Scholar] [CrossRef]
- Gronostajski, J.Z.; Kaczmar, J.W.; Marciniak, H.; Matuszak, A. Direct recycling of aluminium chips into extruded products. Achiev. Mech. Mater. Eng. 1997, 64, 149–156. [Google Scholar] [CrossRef]
- Shamsudin, S.; Lajis, M.A.; Zhong, Z.W. Solid-state recycling of light metals: A review. Adv. Mech. Eng. 2016, 8, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Wan, B.; Chena, W.; Lua, T.; Liua, F.; Jianga, Z.; Maoa, M. Review of solid state recycling of aluminum chips. Resour. Conserv. Recycl. 2017, 125, 37–47. [Google Scholar] [CrossRef]
- Munir, Z.A.; Quach, D.V.; Ohyanagi, M. Electric Current Activation of Sintering: A Review of the Pulsed Electric Current Sintering Process. J. Am. Ceram. Soc. 2011, 94, 1–19. [Google Scholar] [CrossRef]
- Munir, Z.A.; Quach, D.V.; Ohyanagi, M. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. Sci. 2006, 41, 763–777. [Google Scholar] [CrossRef]
- Rahaman, M.N.B. Ceramic Processing and Sintering; Marcel Dekker Verlag: New York, NY, USA, 1995; Volume 33, pp. 425–539. [Google Scholar]
- Guillon, O.; Gonzalez-Julian, J.; Dargatz, B.; Kessel, T.; Schierning, G.; Räthel, J.; Herrmann, M. Field-Assisted Sintering Technology/Spark Plasma Sintering: Mechanisms, Materials, and Technology Developments. Adv. Eng. Mater. 2014, 16, 830–849. [Google Scholar] [CrossRef]
- Dong, P.; Wang, Z.; Wang, W.; Chena, S.; Zhou, J. Understanding the spark plasma sintering from the view of materials joining. Scr. Mater. 2016, 123, 118–121. [Google Scholar] [CrossRef]
- Locci, A.M.; Cincotti, A.; Todde, S.; Orrù, R.; Cao, G. A methodology to investigate the intrinsic effect of the pulsed electric current during the spark plasma sintering of electrically conductive powders. Sci. Technol. Adv. Mater. 2010, 11, 045005. [Google Scholar] [CrossRef]
- Chen, W.; Anselmi-Tamburini, U.; Garay, J.E.; Groza, J.R.; Munir, Z.A. Fundamental investigations on the spark plasma sintering/synthesis process. Mater. Sci. Eng. A 2005, 394, 132–138. [Google Scholar] [CrossRef]
- Kellogg, F.; McWilliams, B.; Cho, K. Effect of Current Pathways during Spark Plasma Sintering of an Aluminum Alloy Powder. Metall. Mater. Trans. A 2016, 47, 6353–6367. [Google Scholar] [CrossRef]
- Vanmeensel, K.; Laptev, A.; Hennick, J.; Vleugelsa, J.; Van der Biest, O. Modelling of the temperature distribution during field assisted sintering. Acta Mater. 2005, 53, 4379–4388. [Google Scholar] [CrossRef]
- Zhaohui, Z.; Fuchi, W.; Lin, W.; Shukui, L.; Osamu, S. Sintering mechanism of large-scale ultrafine-grained copper prepared by SPS method. Mater. Lett. 2008, 62, 3987–3990. [Google Scholar] [CrossRef]
- Song, X.; Liu, X.; Zhang, J. Neck Formation and Self-Adjusting Mechanism of Neck Growth of Conducting Powders in Spark Plasma Sintering. J. Am. Ceram. Soc. 2006, 89, 494–500. [Google Scholar] [CrossRef]
- Orrù, R.; Licheri, R.; Locci, A.M.; Cincotti, A.; Cao, G. Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater. Sci. Eng. R 2009, 63, 127–287. [Google Scholar] [CrossRef]
- Saunders, T.; Grasso, S.; Reece, M.J. Plasma formation during electric discharge (50 V) through conductive powder compacts. J. Eur. Ceram. Soc. 2015, 35, 871–877. [Google Scholar] [CrossRef]
- Paraskevas, D.; Vanmeensel, K.; Vleugels, J.; Dewulf, W.; Deng, Y.; Duflou, J.R. Spark Plasma Sintering as a Solid-State Recycling Technique: The Case of Aluminum Alloy Scrap Consolidation. Materials 2014, 7, 5664–5687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paraskevas, D.; Vanmeensel, K.; Vleugels, J.; Dewulf, W.; Duflou, J.R. The Use of Spark Plasma Sintering to Fabricate a Twophase Material from Blended Aluminium Alloy Scrap and Gas Atomized Powder. Procedia Cirp 2015, 26, 455–460. [Google Scholar] [CrossRef] [Green Version]
- Cislo, C.N.; Fazokas, T.; Buchmayr, B.; Weiß, C. Consolidation behaviour of aluminium alloy machining chips during the high pressure torsion process. In Proceedings of the Conference Proceedings of XXXVIII. Verformungskundlichen Kolloquium, Zauchensee, Austria, 23–27 March 2019; pp. 114–119. [Google Scholar]
- Milkereit, B. Kontinuierliche Zeit-Temperatur-Ausscheidungs-Diagramme von Al-Mg-Si-Legierungen. Ph.D. Thesis, University of Rostock, Rostock, Germany, 1 December 2010. [Google Scholar]
- Sefrin, H.; Kiechle, A.; Walker, G.; Zielasko, W.; Freiler, C.; Thomas, F.; Palm, I.; Eisenblätter, G.; Stäbler, D.; Breuer, D.; et al. Bestimmung und Beurteilung von Emissionen bei der spanenden Metallbearbeitung mit Minimalmengenschmierung. Gefahrst.-Reinhalt. Der Luft 2003, 63, 417–424. [Google Scholar]
- Smeltzer, W.W. Oxidation of Aluminum in the Temperature Range 400°–600 °C. J. Electrochem. Soc. 1956, 103, 209. [Google Scholar] [CrossRef]
- Xie, G.; Ohashi, O.; Yamaguchi, N.; Song, M.; Mitsuishi, K.; Furuya, K.; Noda, T. Behavior of oxide film at the interface between particles in sintered Al powders by pulse electric-current sintering. Metall. Mater. Trans. A 2003, 34, 699–703. [Google Scholar] [CrossRef]
- Spierings, A.B.; Schneider, M.; Eggenberger, R. Comparison of density measurement techniques for additive manufactured metallic parts. Rapid Prototyp. J. 2011, 17, 380–386. [Google Scholar] [CrossRef]
- Bai, S.; Perevoshchikova, N.; Sha, Y.; Wu, X. The Effects of Selective Laser Melting Process Parameters on Relative Density of the AlSi10Mg Parts and Suitable Procedures of the Archimedes Method. Appl. Sci. 2019, 9, 583. [Google Scholar] [CrossRef] [Green Version]
- Behrens, B.A.; Frischkorn, C.; Bonhage, M. Reprocessing of AW2007, AW6082 and AW7075 aluminium chips by using sintering and forging operations. Prod. Eng. 2014, 8, 443–451. [Google Scholar] [CrossRef]
Sample | Fc [kN] | σC [MPa] | Punch | Die | Fs [kN] | σs [MPa] | P-Temp [°C] |
---|---|---|---|---|---|---|---|
SPS-1 | 250 < FC < 300 | 800 < σC < 960 | Graphite | Graphite | 16 ** | 51 ** | 550 |
SPS-2 | 250 < FC < 300 | 800 < σC < 960 | Graphite | Graphite | 16 ** (r) | 51 ** (r) | 550 |
C-1 | 250 < FC < 300 | 800 < σC < 960 | Copper | Copper | 5 ** | 16 ** | 300/350 |
S-1 | 250 < FC < 300 | 800 < σC < 960 | Copper | Steel | 5 ** | 16 ** | 300/350 |
C-2 | 250 < FC < 300 | 800 < σC < 960 | Copper | Copper | 5/15 * | 16/48 * | 300/350 |
S-2 | 250 < FC < 300 | 800 < σC < 960 | Copper | Steel | 5/15 * | 16/48 * | 300/350 |
C-3 | 250 < FC < 300 | 800 < σC < 960 | Copper | Copper | 5/20 * | 16/64 * | 300/350 |
S-3 | 250 < FC < 300 | 800 < σC < 960 | Copper | Steel | 5/20 * | 16/64 ** | 300/350 |
C-4 | 250 < FC < 300 | 800 < σC < 960 | Copper | Copper | 5/20 * | 16/64 * | 350/400 |
S-4 | 250 < FC < 300 | 800 < σC < 960 | Copper | Steel | 5/20 * | 16/64 * | 350/400 |
C-5 | 200 | 640 | Copper | Copper | 5/20 * | 16/64 * | 350/400 |
S-5 | 200 | 640 | Copper | Steel | 5/20 * | 16/64 * | 350/400 |
C-6 | 150 | 480 | Copper | Copper | 5/20 * | 16/64 * | 350/400 |
S-6 | 150 | 480 | Copper | Steel | 5/20 * | 16/64 * | 350/400 |
C-7 | 100 | 320 | Copper | Copper | 5/20 * | 16/64 * | 350/400 |
S-7 | 100 | 320 | Copper | Steel | 5/20 * | 16/64 * | 350/400 |
C-8 | 50 | 160 | Copper | Copper | 5/20 * | 16/64 * | 350/400 |
S-8 | 50 | 160 | Copper | Steel | 5/20 * | 16/64 * | 350/400 |
σC [MPa] | ρC [g/cm3] | ρ [g/cm3] | ρC1 [%] | ρ1 [%] | ρC2 [%] | ρ2 [%] | |
---|---|---|---|---|---|---|---|
Measurements | ρ6082 = 2.71 | ρ6082 = 2.832 | |||||
SPS | >800 | 2.662 | 2.673 | 98.23 | 98.63 | 94.00 | 94.39 |
PECS | >800 | 2.670 | 2.705 | 98.52 | 99.82 | 94.28 | 95.52 |
640 | 2.663 | 2.695 | 98.27 | 99.45 | 94.03 | 95.16 | |
480 | 2.513 | 2.698 | 92.73 | 99.56 | 88.74 | 95.27 | |
320 | 2.375 | 2.692 | 87.64 | 99.34 | 83.86 | 95.06 | |
160 | 2.172 | 2.651 | 80.15 | 97.82 | 76.69 | 93.61 |
Sample | Ø | min. | max. | σ | Ø | min. | max. | σ |
---|---|---|---|---|---|---|---|---|
as sintered | T6 temper | |||||||
T-1 | 42.7 | 37.8 | 44.3 | 1.1 | 113.7 | 106 | 123 | 5.6 |
T-2 | 41.6 | 35.9 | 49.5 | 2.8 | 116.1 | 108 | 121 | 4.1 |
C-3 | 39.0 | 35.0 | 42.8 | 2.1 | 110.6 | 101 | 114 | 3.7 |
S-6 | 44.6 | 40.8 | 56.9 | 4.7 | 107.6 | 91.7 | 120 | 9.7 |
SPS-1 | 60.7 | 58.8 | 62.4 | 1.0 | 110.6 | 94.0 | 118 | 7.5 |
SPS-2 | 59.8 | 55.3 | 63.2 | 2.1 | 111.7 | 102 | 119 | 5.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cislo, C.N.; Kronthaler, B.; Buchmayr, B.; Weiß, C. Solid State Recycling of Aluminum Alloy Chips via Pulsed Electric Current Sintering. J. Manuf. Mater. Process. 2020, 4, 23. https://doi.org/10.3390/jmmp4010023
Cislo CN, Kronthaler B, Buchmayr B, Weiß C. Solid State Recycling of Aluminum Alloy Chips via Pulsed Electric Current Sintering. Journal of Manufacturing and Materials Processing. 2020; 4(1):23. https://doi.org/10.3390/jmmp4010023
Chicago/Turabian StyleCislo, Clemens Nikolaus, Bernhard Kronthaler, Bruno Buchmayr, and Christian Weiß. 2020. "Solid State Recycling of Aluminum Alloy Chips via Pulsed Electric Current Sintering" Journal of Manufacturing and Materials Processing 4, no. 1: 23. https://doi.org/10.3390/jmmp4010023
APA StyleCislo, C. N., Kronthaler, B., Buchmayr, B., & Weiß, C. (2020). Solid State Recycling of Aluminum Alloy Chips via Pulsed Electric Current Sintering. Journal of Manufacturing and Materials Processing, 4(1), 23. https://doi.org/10.3390/jmmp4010023