Minimisation of Heating Time for Full Hardening in Hot Stamping Using Direct Resistance Heating
Abstract
:1. Introduction
2. Hot Stamping Using Direct Resistance Heating
2.1. Hot Stamping Having Simultaneous Heating of Next Blank with the Die Quenching
2.2. Experimental Procedure of Hat-Shaped Bending Using Direct Resistance Heating
3. Effect of Heat Microstructure of Blank Sheet on Quenchability in Die Quenching
4. Full Hardening of Products by a Decrease in Heating Rate and by Temperature Holding in Hot Stamping Using Direct Resistance Heating
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Karbasian, H.; Tekkaya, A.E. A Review on Hot Stamping. J. Mater. Process. Technol. 2010, 210, 2103–2118. [Google Scholar] [CrossRef]
- Mori, K.; Bariani, P.F.; Behrens, B.A.; Brosius, A.; Bruschi, S.; Maeno, T.; Merklein, M.; Yanagimoto, J. Hot stamping of ultra-high strength steel parts. CIRP Ann. 2017, 66, 755–777. [Google Scholar] [CrossRef]
- Mori, K.; Maki, S.; Tanaka, Y. Warm and Hot Stamping of Ultra High Tensile strength Steel Sheets Using Resistance Heating. CIRP Ann. 2005, 54, 209–212. [Google Scholar] [CrossRef]
- Mori, K.; Okuda, Y. Tailor Die Quenching in Hot Stamping for Producing Ultra-High Strength Steel Formed Parts Having Strength Distribution. CIRP Ann. 2010, 59, 291–294. [Google Scholar] [CrossRef]
- Kolleck, R.; Veit, R.; Merklein, M.; Lechler, J.; Geiger, M. Investigation on Induction Heating For Hot Stamping of Boron Alloyed Steels. CIRP Ann. 2009, 58, 275–278. [Google Scholar] [CrossRef]
- Maki, S.; Hamamoto, A.; Saito, S.; Mori, K. Hot Stamping and Press Quenching of Ultrahigh Strength Steel Sheet using Resistance Heating. Key Eng. Mater. 2007, 344, 309–316. [Google Scholar] [CrossRef]
- Ozturk, F.; Ece, R.E.; Polat, N.; Koksal, A.; Evis, Z.; Polat, A. Mechanical and microstructural evaluations of hot formed titanium sheets by electrical resistance heating process. Mater. Sci. Eng. A 2013, 578, 207–214. [Google Scholar] [CrossRef]
- Lee, C.W.; Choi, W.S.; Cho, Y.R.; De Cooman, B.C. Direct resistance joule heating of Al-10 pct Si-coated press hardening steel. Metall. Mater. Trans. A 2016, 47, 2875–2884. [Google Scholar] [CrossRef]
- Maeno, T.; Mori, K.I.; Ogihara, T.; Fujita, T. Removal of thin oxide scale by ultrasonic cleaning with diluted hydrochloric acid in hot stamping of bare 22MnB5 sheet using resistance heating. Procedia Manufact. 2019, 29, 225–231. [Google Scholar] [CrossRef]
- Vaissiere, L.; Laurent, J.P.; Reinhardt, A. Development of Pre-Coated Boron Steel for Applications on PSA Peugeot Citroen and RENAULT Bodies in White. SAE Trans. J. Mater. Manuf. 2002, 111, 909–917. [Google Scholar]
- Quan, G.Z.; Wang, T.; Zhang, L. Research on the influence of hot stamping process parameters on phase field evolution by thermal-mechanical phase coupling finite element. Int. J. Adv. Manuf. Technol. 2016, 89, 1–17. [Google Scholar] [CrossRef]
- Zhang, P.; Zhu, L.; Xi, C.; Luo, J. Study on Phase Transformation in Hot Stamping Process of USIBOR® 1500 High-Strength Steel. Metals 2019, 9, 1119. [Google Scholar] [CrossRef] [Green Version]
- Pedraza, J.P.; Landa-Mejia, R.; García-Rincon, O.; Isaac Garcia, C. The effect of rapid heating and fast cooling on the transformation behavior and mechanical properties of an advanced high strength steel (AHSS). Metals 2019, 9, 545. [Google Scholar] [CrossRef] [Green Version]
- Mori, K. Smart Hot Stamping of Ultra-High Strength Steel Parts. Trans. Nonferrous Met. Soc. China 2012, 22, s496–s503. [Google Scholar] [CrossRef]
- Löbbe, C.; Hering, O.; Hiegemann, L.; Tekkaya, A.E. Setting Mechanical Properties of High Strength Steels for Rapid Hot Forming Processes. Materials 2016, 9, 229. [Google Scholar] [CrossRef] [PubMed]
- Mori, K.; Abe, Y.; Miyazawa, S. Warm stamping of ultra-high strength steel sheets at comparatively low temperatures using rapid resistance heating. Int. J. Adv. Manuf. Technol. 2020, 108, 3885–3891. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, K.; Politis, D.J.; Chen, G.; Wang, L. An experimental investigation on the ductility and post-form strength of a martensitic steel in a novel warm stamping process. J. Mater. Process. Technol. 2020, 275, 116387. [Google Scholar] [CrossRef]
- Liu, X.; Yang, X.; Sun, Y.; Politis, D.J.; Mori, K.-I.; Wang, L. Characterization of Thermomechanical Boundary Conditions of a Martensitic Steel for a FAST Forming Process. J. Manuf. Mater. Process. 2020, 4, 57. [Google Scholar]
- Hoffmann, H.; So, H.; Steinbeiss, H. Design of hot Stamping tools with cooling system. CIRP Ann. 2007, 56, 269–272. [Google Scholar] [CrossRef]
- Nürnberger, F.; Diekamp, M.; Moritz, J.; Wolf, L.; Hübner, S.; Behrens, B.A. Spray Cooling of Early Extracted Hot Stamped Parts. In TMS 2014 Supplemental Proceedings; The Minerals, Metals & Materials Society; Springer: Berlin/Heidelberg, Germany, 2014; pp. 983–990. [Google Scholar]
- Ota, E.; Yogo, Y.; Iwata, T.; Iwata, N.; Ishida, K.; Takeda, K. Formability improvement technique for heated sheet metal forming by partial cooling. Key Eng. Mater. 2014, 622–623, 279–283. [Google Scholar] [CrossRef]
- Zhao, K.; Chang, Y.; Hu, P.; Wu, Y. Influence of rapid cooling pretreatment on microstructure and mechanical property of hot stamped AHSS Part. J. Mater. Process. Technol. 2016, 228, 68–75. [Google Scholar] [CrossRef]
- Lee, S.H.; Park, J.; Park, K.; Kweon, D.K.; Lee, H.; Yang, D.; Park, H.; Kim, J. A study on the cooling performance of newly developed slice die in the hot press forming process. Metals 2018, 8, 947. [Google Scholar] [CrossRef] [Green Version]
- Behrens, B.A.; Bouguecha, A.; Gaebel, C.M.; Moritz, J.; Schrödter, J. Hot Stamping of Load Adjusted Structural Parts. Procedia Eng. 2014, 81, 1756–1761. [Google Scholar] [CrossRef] [Green Version]
- Maeno, T.; Mori, K.; Fujimoto, M. Improvements in productivity and formability by water and die quenching in hot stamping of ultra-high strength steel parts. CIRP Ann. 2015, 64, 281–284. [Google Scholar] [CrossRef]
- Nakagawa, Y.; Mori, K.; Maeno, T.; Nakao, Y. Reduction in holding time at bottom dead centre in hot stamping by water and die quenching. Procedia Manuf. 2018, 15, 1111–1118. [Google Scholar] [CrossRef]
- Usui, H.; Mitsui, K. Study of ratio temperature radiometry using a multi-spectrum camera. In Proceedings of the International Conference on High-Speed Imaging and Photonics, Enschede, The Netherlands, 8–12 October 2018. [Google Scholar]
Transferring Time [s] | Forming Speed [mm/s] | Holding Pressure in Die Quenching [MPa] | Holding Time in Die Quenching [s] |
---|---|---|---|
2.0 | 230 | 19 | 5 |
Heating Temperature [°C] | Current Density [A/mm2] | Heating Rate v [°C/s] | Temperature Holding Time at 900 °C t [s] | |
---|---|---|---|---|
Heating up | Hold | |||
900 | 15.3–52.1 | 9.51 (t = 5 s), 10.1 (t = 10 s) | 67, 107 and 275 | 0, 5 and 10 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maeno, T.; Mori, K.-i.; Sakagami, M.; Nakao, Y.; Talebi-Anaraki, A. Minimisation of Heating Time for Full Hardening in Hot Stamping Using Direct Resistance Heating. J. Manuf. Mater. Process. 2020, 4, 80. https://doi.org/10.3390/jmmp4030080
Maeno T, Mori K-i, Sakagami M, Nakao Y, Talebi-Anaraki A. Minimisation of Heating Time for Full Hardening in Hot Stamping Using Direct Resistance Heating. Journal of Manufacturing and Materials Processing. 2020; 4(3):80. https://doi.org/10.3390/jmmp4030080
Chicago/Turabian StyleMaeno, Tomoyoshi, Ken-ichiro Mori, Masato Sakagami, Yoshitaka Nakao, and Ali Talebi-Anaraki. 2020. "Minimisation of Heating Time for Full Hardening in Hot Stamping Using Direct Resistance Heating" Journal of Manufacturing and Materials Processing 4, no. 3: 80. https://doi.org/10.3390/jmmp4030080
APA StyleMaeno, T., Mori, K. -i., Sakagami, M., Nakao, Y., & Talebi-Anaraki, A. (2020). Minimisation of Heating Time for Full Hardening in Hot Stamping Using Direct Resistance Heating. Journal of Manufacturing and Materials Processing, 4(3), 80. https://doi.org/10.3390/jmmp4030080