Strategies for Increasing the Productivity of Pulsed Laser Cladding of Hot-Crack Susceptible Nickel-Base Superalloy Inconel 738 LC
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Setup and General Aspects
2.3. Decoupling of Heat Source—Hot-Wire Technology
2.4. Pulse Shaping
2.5. High-Speed Recording
2.6. Temperature-Dependent Emissivity of IN 738 LC
2.7. Numerical Simulation
2.8. Metallography
2.9. Statistical Analysis
2.10. Summary of Main Parameters
3. Results and Discussion
3.1. Preliminary Investigation
3.2. Influence of the Welding Parameters on the Weld Seam Geometry
3.3. Productivity Enhancement
3.4. Statistical Analysis of the Weld Seam Geometry
3.5. Investigation of the Thermal Management in the Welding Zone
3.5.1. Bulk Solidification Time
3.5.2. Thermal Modelling
3.6. Hot-Cracking Susceptibility
4. Conclusions
- (1)
- The decoupling of heat source from the laser beam into the filler material was successfully implemented by the hot-wire technology.
- (2)
- It is demonstrated that, exceptionally, the wire-feeding rate has a significant influence on the deposition rate and hence the productivity enhancement.
- (3)
- The productivity could be increased up to a factor of about five compared to the initial wire-feeding rate of 4 mm/s, i.e., from initially about 4 to about 20 g/h.
- (4)
- The hot-wire technique showed no significant influence on the melting deposition rate and the weld seam geometry as well as the hot-crack formation, i.e., the active intervention in the heat management.
- (5)
- The largest influence on the weld seam geometry is addressed to the wire-feeding rate and the pulse energy.
- (6)
- Increasing wire-feeding rates lead to decreasing stability of the welding process in terms of discontinuous wire-feeding.
- (7)
- The statistical analysis revealed regression functions for predicting weld seam geometries and the associated input parameters.
- (8)
- The hot-crack susceptibility is mainly influenced by the wire-feeding rate, pulse energy and pulse shape; the hot-wire technology is just subordinated.
- (9)
- The hot-crack susceptibility tends to decrease for lower pulse energy, shorter pulse length and larger wire-feeding rate.
- (10)
- Due to the limited detection of hot-cracks, a statistical analysis of the hot-crack susceptibility could not yet definitely be conducted.
- (1)
- Micro-computed tomography will help to find all hot-cracks in a sample to improve the statistics and find systematic correlations between the welding parameters and the hot-crack susceptibility.
- (2)
- The study has to be expanded to open further opportunities, e.g., base material preheating, further pulse shapes etc., for controlling the hot-crack susceptibility and intervention of the temperature-time regime as well as other material pairings and larger wire diameters.
- (3)
- Larger diameters of the filler wire at lower wire-feeding rates may increase the melting deposition rate, pointing also to a more stable process control.
- (4)
- Validation of the prediction model via multi-objective optimization for distinct end-use fields.
Author Contributions
Funding
Conflicts of Interest
Abbreviations
A | aspect ratio |
AD | dilution area |
AH | buildup area |
AW | cross-sectional area of filler-wire |
D | dilution |
δτ | standard deviation of bulk solidification time |
dw | diameter of filler-wire |
EL | laser pulse energy |
exp. | experiment |
H | buildup height |
HS 282 | Haynes 282 |
HV | high-velocity |
IN 738 LC | Inconel 738 low carbon |
lbare | bare wire length of Joule heating |
ltip | length of wire tip |
n, no. | number |
Plaser | laser beam power |
Phw, Phot-wire | hot-wire power |
effective hot-wire power | |
maximum hot-wire power | |
Ppulse peak | pulse peak power |
PS | pulse shape |
φ | deposition efficiency |
Rd | deposition rate |
PHS282 | density of 282 |
sim. | simulation |
mean value of bulk solidification time | |
bulk solidification time | |
Θ | wetting angle |
Tliq | liquidus temperature |
Tsol | solidus temperature |
Twire | wire tip temperature |
vf | wire-feeding rate |
vw | weld velocity |
W | buildup width |
w/o | without |
References
- Bürgel, R. Handbuch Hochtemperatur-Werkstofftechnik: Grundlagen, Werkstoffbeanspruchungen, Hochtemperaturlegierungen und –Beschichtungen; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Burbaum, B. Verfahrenstechnische Grundlagen für das Laserstrahl-Umschmelzen einkristalliner Nickelbasis-Superlegierungen. Ph.D. Thesis, Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, Aachen, Germany, 2010. [Google Scholar]
- Arjakine, N.; Piegert, S.; Slyvinskyy, O. Ni-Basis Superlegierungen im Turbomaschinenbau und deren Besonderheiten bei der schweißtechnischen Bearbeitung. In Proceedings of the 14th Sommerkurs Werkstoffe und Fügen am Institut für Werkstoff- und Fügetechnik, Magdeburg, Germany, 23–24 September 2011. [Google Scholar]
- Denkena, B.; Boess, V.; Nespor, D.; Floeter, F.; Rust, F. Engine blade regeneration: A literature review on common technologies in terms of machining. Int. J. Adv. Manuf. Technol. 2015, 58, 917–924. [Google Scholar] [CrossRef]
- Aschenbruck, J.; Adamczuk, R.; Seume, J. Recent Progress in Turbine Blade and Compressor Blisk Regeneration. Procedia CIRP 2014, 22, 256–262. [Google Scholar] [CrossRef] [Green Version]
- Churchman, C.; Bonifaz, E.; Richards, N. Comparison of single crystal Ni based superalloy repair by gas tungsten arc and electron beam processes. Mater. Sci. Technol. 2011, 27, 811–817. [Google Scholar] [CrossRef]
- Stimper, B. Verlängern von Verdichterschaufeln durch Laser-Pulver-Auftragschweißen. Dvs-Ber. 2000, 208, 93–97. [Google Scholar]
- Zhang, J.; Weckmann, D.C.; Zhou, Y. Effects of Temporal pulse Shaping on Cracking Susceptibility of 6061-T6 Aluminum Nd:YAG Laser Welds. Weld. J. 2008, 87, 18–30. [Google Scholar]
- Wilden, J.; Bergmann, J.P.; Holtz, R. Modification of solidification conditions through the set of pulsed Nd:YAG Lasers. In Proceedings of the XVI International Symposium on Gas Flow and Chemical Lasers & High Power Lasers Conference, Gmunden, Austria, 4–8 September 2006. [Google Scholar]
- Katayama, S.; Mizutani, M.; Matsunawa, A. Modelling of melting and solidification behaviour during laser spot welding. Sci. Technol. Weld. Join. 1997, 2, 1–9. [Google Scholar] [CrossRef]
- Nurminen, J.; Riihimäki, J.; Näkki, J.; Vuoristo, P. Comparison of laser cladding with powder and hot and cold wire techniques. In Proceedings of the 25th International Congress on Applications of Laser and Electro-Optics 2006, ICALEO 2006, Paper 1006, Scottsdale, AZ, USA, 30 October–2 November 2006. [Google Scholar]
- Tsuyama, T.; Yuda, M.; Nakai, K. Effects of hot wire on mechanical properties of weld metal using gas-shielded arc welding with CO2 gas. Weld World 2014, 58, 77–83. [Google Scholar] [CrossRef]
- Chemical composition of Inconel 738 Low Carbon. Available online: https://www.nickelinstitute.org/media/1709/in_738alloy_preliminarydata_497_.pdf (accessed on 27 August 2020).
- Chemical Composition of Haynes 282. Available online: http://haynesintl.com/docs/default-source/pdfs/new-alloy-brochures/high-temperature-alloys/brochures/282-brochure.pdf?sfvrsn=20 (accessed on 27 August 2020).
- Bergmann, J.P.; Bielenin, M. Prozessstrategie zum Reparieren von Nickelbasisbauteilen mittels Laserstrahl; AIF-Abschlussbericht–IGF-Nr. 18334/BR1; DVS Research Association: Düsseldorf, Germany, 2017. [Google Scholar]
- Kästner, C.; Schmidt, L.; Leinhoß, R.; Behr, A.; Schricker, K.; Bergmann, J.P. Produktivitätssteigerung Beim Gepulsten Laserstrahl-Auftragschweissen Von Nickelbasis-Superlegierungen Durch Entkopplung Der Wärmeanteile. In Proceedings of the 11th Mittweidaer Lasertagung, Mittweida, Germany, 13–14 November 2019; pp. 3–8. [Google Scholar]
- Stritt, P. Prozessstrategie zur Vermeidung von Heißrissen beim Remote-Laserstrahlschweißen von AlMgSi 6016. Ph.D. Thesis, Universität Stuttgart, Stuttgart, Germany, 2016. [Google Scholar]
- Bielenin, M.; Sieber, P.; Bergmann, J.P. Neuer Ansatz für die Reparatur von Ni-Basisbauteilen mit Gepulstem Laserstrahl und Drahtförmigen Zusatzwerkstoffen. In Proceedings of the DVS Congress 2015, Nuremberg, Germany, 14–17 September 2015; pp. 381–386. [Google Scholar]
- Keller, B.P.; Nelson, S.E.; Walton, K.L.; Ghosh, T.K.; Tompson, R.V.; Loyalka, S.K. Total hemispherical emissivity of Inconel 718. Nucl. Eng. Des. 2015, 287, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Kieruj, P.; Przestacki, D.; Chwalczuk, T. Determination of emissivity coefficient of heat-resistant super alloys and cemented carbide. Arch. Mech. Technol. Mater. 2016, 36, 30–34. [Google Scholar] [CrossRef] [Green Version]
- Kirchhoff, G. Ueber das Verhältniss zwischen dem Emissionsvermögen und dem Absorptionsvermögen der Körper für Wärme und Licht. Ann. Der Phys. Und Chem. 1860, 109, 275–301. [Google Scholar] [CrossRef] [Green Version]
- Aune, R.E.; Battezzati, L.; Brooks, R.; Egry, I.; Fecht, H.J.; Garandet, J.P.; Hayashi, M.; Mills, K.C.; Passerone, A.; Quested, P.N.; et al. Thermophysical properties of IN738LC, MM247LC and CMSX-4 in the liquid and high temperature solid phase. Superalloys 2005, 718, 625–706. [Google Scholar]
- Günther, K. Werkstofftechnische Betrachtung zum Heißdraht unterstützten MSG-Auftragschweißen hartstoffverstärkter Verschleißschutzlegierungen. Ph.D. Thesis, Universitätsverlag Ilmenau, Ilmenau, Germany, 2017. [Google Scholar]
- Meyer, R.; Krueger, D. MINITAB Guide to Statistics, 2nd ed.; Prentice Hall PTR: Upper Saddle River, NJ, USA, 2001. [Google Scholar]
- Anderson, T.W.; Darling, D.A. Asymptotic Theory of Certain “Goodness of Fit” Criteria Based on Stochastic Processes. Ann. Math. Stat. 1952, 23, 193–212. [Google Scholar] [CrossRef]
- Box, G.E.P.; Wilson, K.B. On the experimental attainment of optimum conditions. J. R. Stat. Soc. Ser. B (Methodological) 1951, 13, 1–38. [Google Scholar] [CrossRef]
- Box, G.E.P.; Cox, D.R. An analysis of transformations. J. R. Stat. Soc. Ser. B (Methodological) 1964, 26, 211–252. [Google Scholar] [CrossRef]
- Kästner, C.; Neugebauer, M.; Schricker, K.; Bergmann, J.P. Statistical analysis of pulsed laser beam welding repair strategies of Nickel-base superalloys. Procedia CIRP 2020, in press. [Google Scholar]
Ni | Cr | Co | Al | Ti | W | Mo | Ta | Nb | Si | C | B | Fe | Mn | S | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
min | bal. | 15.7 | 3.0 | 3.2 | 3.2 | 2.4 | 1.5 | 1.5 | 0.6 | 0 | 0.09 | 0.003 | 0 | 0 | 0 |
max | 16.3 | 9.0 | 3.7 | 3.7 | 2.8 | 2.0 | 2.0 | 1.1 | 0.3 | 0.13 | 0.08 | 0.05 | 0.02 | 0.015 |
Ni | Cr | Co | Mo | Ti | Al | Fe | Mn | Si | C | B | |
---|---|---|---|---|---|---|---|---|---|---|---|
min | 57 | - | - | - | - | - | 0 | 0 | 0 | - | - |
max | bal. | 20.0 | 10.0 | 8.5 | 2.1 | 1.5 | 1.5 | 0.3 | 0.15 | 0.06 | 0.005 |
Wire-Feeding Rate [mm/s] | Effective Hot-Wire Power [W] | |||
---|---|---|---|---|
70% (740 °C) | 100% (900 °C) | |||
4 | 0.00 | 0.28 | 0.50 | 0.71 |
8 | 0.00 | 0.57 | 1.00 | 1.42 |
12 | 0.00 | 0.85 | 1.50 | 2.13 |
16 | 0.00 | 1.14 | 2.00 | 2.84 |
Parameter | Range/Values |
---|---|
effective hot-wire power | 0–2.84 W |
laser pulse energy | 4.1–19.2 J |
laser pulse peak power | 400–1300 W |
number of pulse shapes | 3 |
laser pulse frequency | 14 Hz |
weld velocity | 1.8 mm/s |
wire-feeding rate | 1–16 mm/s |
HV-recording | 3000 kHz |
pyrometer sampling | 100 kHz |
pyrometer averaging | 10 samples |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kästner, C.; Neugebauer, M.; Schricker, K.; Bergmann, J.P. Strategies for Increasing the Productivity of Pulsed Laser Cladding of Hot-Crack Susceptible Nickel-Base Superalloy Inconel 738 LC. J. Manuf. Mater. Process. 2020, 4, 84. https://doi.org/10.3390/jmmp4030084
Kästner C, Neugebauer M, Schricker K, Bergmann JP. Strategies for Increasing the Productivity of Pulsed Laser Cladding of Hot-Crack Susceptible Nickel-Base Superalloy Inconel 738 LC. Journal of Manufacturing and Materials Processing. 2020; 4(3):84. https://doi.org/10.3390/jmmp4030084
Chicago/Turabian StyleKästner, Christian, Matthias Neugebauer, Klaus Schricker, and Jean Pierre Bergmann. 2020. "Strategies for Increasing the Productivity of Pulsed Laser Cladding of Hot-Crack Susceptible Nickel-Base Superalloy Inconel 738 LC" Journal of Manufacturing and Materials Processing 4, no. 3: 84. https://doi.org/10.3390/jmmp4030084
APA StyleKästner, C., Neugebauer, M., Schricker, K., & Bergmann, J. P. (2020). Strategies for Increasing the Productivity of Pulsed Laser Cladding of Hot-Crack Susceptible Nickel-Base Superalloy Inconel 738 LC. Journal of Manufacturing and Materials Processing, 4(3), 84. https://doi.org/10.3390/jmmp4030084