Prediction of Shearing and Ploughing Constants in Milling of Inconel 718
Abstract
:1. Introduction
2. Predicting Shear and Ploughing Constants of Peripheral Milling
2.1. Shear Constants of Orthogonal Cutting
2.2. Tool Edge Ploughing Constants of Orthogonal Cutting
2.3. Six Shearing and Ploughing Constants of Oblique Cutting in DGCC Milling Model
3. Identifying DGCC Constants and Friction Angle from Experimental Data
3.1. Experimental Determination of DGCC Milling Constants
3.2. Removal of Bottom Tool Edge Ploughing Effect
3.3. Identifying Mean Friction Angle of Shear Mechanism
4. Results and Discussion
4.1. Prediction Model Verification Experiment
4.2. Determination of Friction Coefficient
4.3. Comparison of Predicted and Identified Cutting Constants
4.4. Comparison with Published Experimental Results
5. Conclusions
- 1.
- The presented DGCC model requires the value of the normal mean friction angle or coefficient for a given combination of tool and work material. An identification formula was presented for the normal mean friction angle of oblique cutting in milling.
- 2.
- Within the recommended range of feed per tooth, the DGCC prediction results reveal that the shearing constants and edge ploughing constants remain approximately constant as the average chip thickness increases and are in good agreement with the experimentally identified cutting constants.
- 3.
- Both the predicted shearing constants using the classic Merchant’s shear angle formula and the selected J–C material law and the predicted ploughing constants are reasonably within the experimental results. The predicted average values of the milling force by the predicted cutting constants are generally within ±20% of the experimental results.
- 4.
- The predicted forces from analytical cutting constants based on the reported friction coefficient and cutter geometry are within 20% and 15% of the average and peak forces, respectively, from published experimental results.
- 5.
- Without considering the thermal–mechanical coupling effect, the presented model is demonstrated to work well for milling of both annealed and aged Inconel 718 at cutting speeds of Vc ≤ 80 m/min.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
A, As, Ab | Average forces vectors for total, side, and bottom tool edges |
ae, ap | Radial depth of cut and axial depth of cut |
DGCC | Dual-mechanism global cutting constant |
ft, fr | Local tangential force and radial force in milling |
Fts, Frs | Tangential and radial chip shearing force of orthogonal cutting |
Ft, Fr, Fa | Tangential, radial, and axial forces of oblique cutting |
Fte, Fre | Tangential and radial edge ploughing forces |
i | Tool helix angle |
Kt, kr, ka | Cutting constants of LGCC model |
Kts, krs, kas, Kte, kre, kae | Cutting constants of DGCC model |
Kts_or, krs_or | Tangential and radial shearing constants of orthogonal cutting |
Kte_or, kre_or | Tangential and radial ploughing constants of orthogonal cutting |
LGCC | Lumped global cutting constant |
N | Number of teeth |
P | Average value of elementary cutting functions |
re | Tool edge radius |
R | Tool radius |
Average uncut chip thickness | |
t0 | Uncut chip thickness |
tmin | Minimum uncut chip thickness |
Vc | Cutting speed |
w | Width of orthogonal cutting |
αn, αr | Normal rake angle and radial rake angle |
βa, βn | Mean and normal mean friction angle |
γ | Shear strain |
Shear strain rate | |
δ | Feed per tooth |
ε | Strain |
Strain rate | |
ηc | Chip flow angle |
θ1, θ2 | Entry and exit angles |
μ | Friction coefficient between chip and rake face |
σ | Flow stress |
τ | Shear flow stress |
ϕn | Normal shear angle |
References
- Merchant, M.E. Mechanics of the Metal Cutting Process. I. Orthogonal Cutting and a Type 2 Chip. J. Appl. Phys. 1945, 16, 267–275. [Google Scholar] [CrossRef]
- Palmer, W.B.; Oxley, P.L.B. Mechanics of Orthogonal Machining. Proc. Inst. Mech. Eng. 1959, 173, 623–654. [Google Scholar] [CrossRef]
- Armarego, E.J.A.; Brown, R.H. The Machining of Metals; Prentice-Hall: Englewood Cliffs, NJ, USA, 1969. [Google Scholar]
- Stabler, G.V. The Fundamental Geometry of Cutting Tools. Proc. Inst. Mech. Eng. 1951, 165, 14–26. [Google Scholar] [CrossRef]
- Kobayashi, S.; Thomsen, E.G. Some Observations on the Shearing Process in Metal Cutting. J. Eng. Ind. 1959, 81, 251–262. [Google Scholar] [CrossRef]
- Albrecht, P. New Developments in the Theory of the Metal-Cutting Process: Part I. The Ploughing Process in Metal Cutting. J. Eng. Ind. 1960, 82, 348–357. [Google Scholar] [CrossRef]
- Waldorf, D.J.; Devor, R.E.; Kapoor, S.G. A Slip-Line Field for Ploughing During Orthogonal Cutting. J. Manuf. Sci. Eng. 1998, 120, 693–699. [Google Scholar] [CrossRef] [Green Version]
- Waldorf, D.J. A Simplified Model for Ploughing Forces in Turning. J. Manuf. Process. 2006, 8, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Jun, M.B.G.; Liu, X.; Devor, R.E.; Kapoor, S.G. Investigation of the Dynamics of Microend Milling—Part I: Model Development. J. Manuf. Sci. Eng. 2006, 128, 893–900. [Google Scholar] [CrossRef]
- Malekian, M.; Park, S.S.; Jun, M.B. Modeling of dynamic micro-milling cutting forces. Int. J. Mach. Tools Manuf. 2009, 49, 586–598. [Google Scholar] [CrossRef]
- Park, S.; Malekian, M. Mechanistic modeling and accurate measurement of micro end milling forces. CIRP Ann. 2009, 58, 49–52. [Google Scholar] [CrossRef]
- Wojciechowski, S.; Matuszak, M.; Powałka, B.; Madajewski, M.; Maruda, R.; Krolczyk, G.M. Prediction of cutting forces during micro end milling considering chip thickness accumulation. Int. J. Mach. Tools Manuf. 2019, 147, 103466. [Google Scholar] [CrossRef]
- Jing, X.; Lv, R.; Chen, Y.; Tian, Y.; Li, H. Modelling and experimental analysis of the effects of run out, minimum chip thickness and elastic recovery on the cutting force in micro-end-milling. Int. J. Mech. Sci. 2020, 176, 105540. [Google Scholar] [CrossRef]
- Rahman, M.A.; Amrun, M.R.; SenthilKumarabc, A. Investigation of the critical cutting edge radius based on material hardness. Int. J. Adv. Manuf. Technol. 2016, 88, 3295–3306. [Google Scholar] [CrossRef]
- Rahman, M.A.; Rahman, M.; Kumar, A.S. Influence of cutting edge radius on small scale material removal at ultra-precise level. Procedia CIRP 2018, 77, 658–661. [Google Scholar] [CrossRef]
- Koenigsberger, F.; Sabberwal, A. An investigation into the cutting force pulsations during milling operations. Int. J. Mach. Tool Des. Res. 1961, 1, 15–33. [Google Scholar] [CrossRef]
- Kline, W.; Devor, R.; Lindberg, J. The prediction of cutting forces in end milling with application to cornering cuts. Int. J. Mach. Tool Des. Res. 1982, 22, 7–22. [Google Scholar] [CrossRef]
- Wang, J.-J.J.; Zheng, C. An analytical force model with shearing and ploughing mechanisms for end milling. Int. J. Mach. Tools Manuf. 2002, 42, 761–771. [Google Scholar] [CrossRef]
- Yellowley, I. Observations on the mean values of forces, torque and specific power in the peripheral milling process. Int. J. Mach. Tool Des. Res. 1985, 25, 337–346. [Google Scholar] [CrossRef]
- Wang, J.-J.J.; Liang, S.Y.; Book, W.J. Convolution Analysis of Milling Force Pulsation. J. Eng. Ind. 1994, 116, 17–25. [Google Scholar] [CrossRef]
- Zheng, L.; Chiou, Y.S.; Liang, S.Y. Three dimensional cutting force analysis in end milling. Int. J. Mech. Sci. 1996, 38, 259–269. [Google Scholar] [CrossRef]
- Wojciechowski, S.; Maruda, R.W.; Nieslony, P.; Królczyk, G.M. Investigation on the edge forces in ball end milling of inclined surfaces. Int. J. Mech. Sci. 2016, 119, 360–369. [Google Scholar] [CrossRef]
- Armarego, E.; Whitfield, R. Computer Based Modelling of Popular Machining Operations for Force and Power Prediction. CIRP Ann. 1985, 34, 65–69. [Google Scholar] [CrossRef]
- Budak, E.; Altintas, Y.; Armarego, E.J.A. Prediction of Milling Force Coefficients From Orthogonal Cutting Data. J. Manuf. Sci. Eng. 1996, 118, 216–224. [Google Scholar] [CrossRef]
- Gonzalo, O.; Jauregi, H.; Uriarte, L.G.; De Lacalle, L.N.L. Prediction of specific force coefficients from a FEM cutting model. Int. J. Adv. Manuf. Technol. 2008, 43, 348–356. [Google Scholar] [CrossRef]
- Li, H.; Zhang, W.; Li, X. Modelling of cutting forces in helical end milling using a predictive machining theory. Int. J. Mech. Sci. 2001, 43, 1711–1730. [Google Scholar] [CrossRef]
- Kobayashi, T.; Simons, J.W.; Brown, C.; Shockey, D. Plastic flow behavior of Inconel 718 under dynamic shear loads. Int. J. Impact Eng. 2008, 35, 389–396. [Google Scholar] [CrossRef]
- Li, H.; Wang, J. A cutting forces model for milling Inconel 718 alloy based on a material constitutive law. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2012, 227, 1761–1775. [Google Scholar] [CrossRef]
- Moufki, A.; Le Coz, G.; Dudzinski, D. End-milling of Inconel 718 Superalloy–An Analytical Modelling. Procedia CIRP 2017, 58, 358–363. [Google Scholar] [CrossRef]
- Uhlmann, E.; Von Der Schulenburg, M.G.; Zettier, R. Finite Element Modeling and Cutting Simulation of Inconel 718. CIRP Ann. 2007, 56, 61–64. [Google Scholar] [CrossRef]
- Lu, X.; Wang, H.; Jia, Z.; Feng, Y.; Liang, S.Y. Coupled thermal and mechanical analyses of micro-milling Inconel 718. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2018, 233, 1112–1126. [Google Scholar] [CrossRef]
- Long, Y.; Guo, C.; Ranganath, S.; Talarico, R.A. Multi-Phase FE Model for Machining Inconel 718. In Proceedings of the ASME 2010 International Manufacturing Science and Engineering Conference, Erie, PA, USA, 12–15 October 2010; Volume 1, pp. 263–269. [Google Scholar]
- Ozel, T.; Llanos, I.; Soriano, J.; Arrazola, P. 3D Finite Element Modelling of Chip Formation Process for Machining Inconel 718: Comparison of Fe Software Predictions. Mach. Sci. Technol. 2011, 15, 21–46. [Google Scholar] [CrossRef]
- Lorentzon, J.; Järvstråt, N.; Josefson, B. Modelling chip formation of alloy 718. J. Mater. Process. Technol. 2009, 209, 4645–4653. [Google Scholar] [CrossRef]
- Pawade, R.; Sonawane, H.A.; Joshi, S.S. An analytical model to predict specific shear energy in high-speed turning of Inconel 718. Int. J. Mach. Tools Manuf. 2009, 49, 979–990. [Google Scholar] [CrossRef]
- Ahmed, N.; Mitrofanov, A.; Babitsky, V.; Silberschmidt, V. Analysis of material response to ultrasonic vibration loading in turning Inconel 718. Mater. Sci. Eng. A 2006, 424, 318–325. [Google Scholar] [CrossRef]
- Sonawane, H.A.; Joshi, S.S. Analytical modeling of chip geometry and cutting forces in helical ball end milling of superalloy Inconel 718. CIRP J. Manuf. Sci. Technol. 2010, 3, 204–217. [Google Scholar] [CrossRef]
- Akmal, M.; Layegh, K.E.; Lazoglu, I.; Akgün, A. Yavaş, Çağlar Friction Coefficients on Surface Finish of AlTiN Coated Tools in the Milling of Ti6Al4V. Procedia CIRP 2017, 58, 596–600. [Google Scholar] [CrossRef]
- Merchant, M.E. Mechanics of the Metal Cutting Process. II. Plasticity Conditions in Orthogonal Cutting. J. Appl. Phys. 1945, 16, 318–324. [Google Scholar] [CrossRef]
- Merchant, M.; Zlatin, N. Nomographs for analysis of metal-cutting processes. Mech. Eng. 1945, 67, 737–742. [Google Scholar]
- Shaw, M.C. Metal Cutting Principles; Oxford University Press: New York, NY, USA, 2005. [Google Scholar]
- Johnson, G.R.; Cook, W.H. A Constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In Proceedings of the 7th International Symposium on Ballistics, The Hague, The Netherlands, 19–21 April 1983; Volume 21, pp. 541–547. [Google Scholar]
- Altintas, Y. Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design; Cambridge University Press: New York, NY, USA, 2012. [Google Scholar]
- Lee, E.H.; Shaffer, B.W. Theory of Plasticity Applied to the Problem of Machining; Division of Applied Mathematics: Brown Providence, RI, USA, 1949. [Google Scholar]
- Grzesik, W.; Nieslony, P.; Laskowski, P. Determination of Material Constitutive Laws for Inconel 718 Superalloy Under Different Strain Rates and Working Temperatures. J. Mater. Eng. Perform. 2017, 26, 5705–5714. [Google Scholar] [CrossRef] [Green Version]
- DeMange, J.J.; Pereira, J.M.; Lerch, B.A.; Prakash, V. Ballistic impact behavior of NI-based super alloys with applications to engine fan-blade containment. In Proceedings of the SEM IX International Congress on Experimental Mechanics, Orlando, FL, USA, 5–8 June 2000; pp. 44–47. [Google Scholar]
- Pereira, J.; Lerch, B.A. Effects of heat treatment on the ballistic impact properties of Inconel 718 for jet engine fan containment applications. Int. J. Impact Eng. 2001, 25, 715–733. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.-S.; Lin, C.-F.; Chen, T.-H.; Chen, H.-W. Dynamic Impact Response of Inconel 718 Alloy under Low and High Temperatures. Mater. Trans. 2011, 52, 1734–1740. [Google Scholar] [CrossRef] [Green Version]
- Mitrofanov, A.; Babitsky, V.; Silberschmidt, V.V. Thermomechanical finite element simulations of ultrasonically assisted turning. Comput. Mater. Sci. 2005, 32, 463–471. [Google Scholar] [CrossRef]
- Weiner, J.H. Shear-Plane Temperature Distribution in Orthogonal Cutting. Trans. ASME 1955, 77, 1331–1341. [Google Scholar]
- Chu, T.H.; Wallbank, J. Determination of the Temperature of a Machined Surface. J. Manuf. Sci. Eng. 1998, 120, 259–263. [Google Scholar] [CrossRef]
- Ning, J.; Nguyen, V.; Huang, Y.; Hartwig, K.T.; Liang, S.Y. Inverse determination of Johnson–Cook model constants of ultra-fine-grained titanium based on chip formation model and iterative gradient search. Int. J. Adv. Manuf. Technol. 2018, 99, 1131–1140. [Google Scholar] [CrossRef]
- Ning, J.; Liang, S.Y. Inverse identification of Johnson-Cook material constants based on modified chip formation model and iterative gradient search using temperature and force measurements. Int. J. Adv. Manuf. Technol. 2019, 102, 2865–2876. [Google Scholar] [CrossRef]
A (MPa) | B (MPa) | C | n | m | ||
---|---|---|---|---|---|---|
1241 | 622 | 0.0134 | 0.6522 | 1.3 | 1 | 1573 |
Ni | Cr | C | Si | Mo | Co | Nb | Ta | Al | Ti | Cu | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|
52.99 | 18.47 | 0.03 | 0.06 | 3.06 | 0.11 | 5.30 | 0.01 | 0.55 | 0.95 | 0.04 | 18.28 |
No. | S (rpm) | ae (mm) | ap (mm) | δ (mm/tooth) | (mm) |
---|---|---|---|---|---|
a1 | 3000 (Vc = 56.5 m/min) | 1.2 | 0.4 | 0.04 | 0.0172 |
a2 | 0.06 | 0.0259 | |||
a3 | 0.08 | 0.0345 | |||
b1 | 0.6 | 0.04 | 0.0172 | ||
b2 | 0.06 | 0.0259 | |||
b3 | 0.08 | 0.0345 | |||
c1 | 1.5 | 0.4 | 0.04 | 0.0191 | |
c2 | 0.06 | 0.0286 | |||
c3 | 0.08 | 0.0382 | |||
d1 | 0.5 | 0.04 | 0.0191 | ||
d2 | 0.06 | 0.0286 | |||
d3 | 0.08 | 0.0382 |
a1 | b1 | a2 | b2 | a3 | b3 | ||
---|---|---|---|---|---|---|---|
δ (mm/tooth) | 0.04 | 0.06 | 0.08 | ||||
ap (mm) | 0.4 | 0.6 | 0.4 | 0.6 | 0.4 | 0.6 | |
A (N) | Ax | −5.297 | −7.020 | −7.355 | −10.278 | −9.498 | −13.542 |
Ay | −10.876 | −16.628 | −13.810 | −20.925 | −16.697 | −25.174 | |
Az | −6.078 | −4.740 | −4.378 | −2.401 | −4.934 | −2.399 | |
As (N) | Asx | −3.445 | −5.167 | −5.845 | −8.768 | −8.086 | −12.130 |
Asy | −11.502 | −17.254 | −14.228 | −21.342 | −16.953 | −25.430 | |
Asz | 2.677 | 4.016 | 3.953 | 5.930 | 5.070 | 7.605 | |
Ab (N) | Abx | −1.852 | −1.509 | −1.412 | |||
Aby | 0.626 | 0.417 | 0.255 | ||||
Abz | −8.756 | −8.332 | −10.004 |
c1 | d1 | c2 | d2 | c3 | d3 | ||
---|---|---|---|---|---|---|---|
δ (mm/tooth) | 0.04 | 0.06 | 0.08 | ||||
ap (mm) | 0.4 | 0.5 | 0.4 | 0.5 | 0.4 | 0.5 | |
A (N) | Ax | −6.343 | −7.598 | −8.877 | −10.889 | −11.628 | −14.298 |
Ay | −13.014 | −16.040 | −15.856 | −19.788 | −19.415 | −24.249 | |
Az | −3.567 | −2.677 | −3.973 | −2.648 | −3.662 | −2.128 | |
As (N) | Asx | −5.017 | −6.271 | −8.049 | −10.061 | −10.680 | −13.350 |
Asy | −12.102 | −15.128 | −15.728 | −19.660 | −19.335 | −24.169 | |
Asz | 3.556 | 4.445 | 5.300 | 6.625 | 6.135 | 7.669 | |
Ab (N) | Abx | −1.326 | −0.828 | −0.948 | |||
Aby | −0.911 | −0.128 | −0.079 | ||||
Abz | −7.123 | −9.273 | −9.798 |
S (rpm) | 3000 | |||
---|---|---|---|---|
ae (mm) | 1.2 | 1.5 | ||
δ (mm/ tooth) | 0.04, 0.06 | (deg): | 0.022/0.243/25.94 0.026/0.261/27.02 0.030/0.279/28.11 | 0.024/0.190/22.81 0.029/0.224/24.81 0.033/0.260/26.96 |
0.04, 0.08 | ||||
0.06, 0.08 | ||||
krs_avg: | 0.261/27.02/0.509 | 0.224/24.86/0.463 | ||
krs: | 0.242/25.89/0.485 |
re (μm) | Vc (m/min) | Kts (MPa) | krs | kas | Kte (N/mm) | kre | kae |
---|---|---|---|---|---|---|---|
5 μm | 40 | 4337.05 | 0.405 | 0.339 | 6.76 | 2.57 | 0 |
60 | 4357.88 | 0.405 | 0.339 | 6.79 | 2.57 | 0 | |
80 | 4372.66 | 0.405 | 0.339 | 6.82 | 2.57 | 0 | |
10 μm | 40 | 4337.05 | 0.405 | 0.339 | 13.52 | 2.57 | 0 |
60 | 4357.88 | 0.405 | 0.339 | 13.59 | 2.57 | 0 | |
80 | 4372.66 | 0.405 | 0.339 | 13.63 | 2.57 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.-J.; Lui, Y.-T.; Lin, Y.-F.; Wang, H.-B.; Liang, S.Y.; Wang, J.-J.J. Prediction of Shearing and Ploughing Constants in Milling of Inconel 718. J. Manuf. Mater. Process. 2021, 5, 8. https://doi.org/10.3390/jmmp5010008
Lin C-J, Lui Y-T, Lin Y-F, Wang H-B, Liang SY, Wang J-JJ. Prediction of Shearing and Ploughing Constants in Milling of Inconel 718. Journal of Manufacturing and Materials Processing. 2021; 5(1):8. https://doi.org/10.3390/jmmp5010008
Chicago/Turabian StyleLin, Chi-Jen, Yu-Ting Lui, Yu-Fu Lin, Hsian-Bing Wang, Steven Y. Liang, and Jiunn-Jyh Junz Wang. 2021. "Prediction of Shearing and Ploughing Constants in Milling of Inconel 718" Journal of Manufacturing and Materials Processing 5, no. 1: 8. https://doi.org/10.3390/jmmp5010008
APA StyleLin, C. -J., Lui, Y. -T., Lin, Y. -F., Wang, H. -B., Liang, S. Y., & Wang, J. -J. J. (2021). Prediction of Shearing and Ploughing Constants in Milling of Inconel 718. Journal of Manufacturing and Materials Processing, 5(1), 8. https://doi.org/10.3390/jmmp5010008