Hole-Expansion: Sensitivity of Failure Prediction on Plastic Anisotropy Modeling
Abstract
:1. Introduction
2. Plastic Anisotropy
2.1. Review of Anisotropic Yield Function
2.2. Calibration of Yld2000-2d Parameters
3. Hole-Expansion
3.1. Experiment
3.2. Finite Element Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Korkolis, Y.P.; Brownell, B.; Coppieters, S.; Tian, H. Modeling of hole-expansion of AA6022-T4 aluminum sheets with anisotropic non-quadratic yield functions. J. Phys. Conf. Ser. 2016, 734, 32083. [Google Scholar] [CrossRef] [Green Version]
- Ha, J.; Coppieters, S.; Korkolis, Y.P. On the expansion of a circular hole in an orthotropic elastoplastic thin sheet. Int. J. Mech. Sci. 2020, 182, 105706. [Google Scholar] [CrossRef]
- Kuwabara, T.; Hashimoto, K.; Iizuka, E.; Yoon, J.W. Effect of anisotropic yield functions on the accuracy of hole expansion simulations. J. Mater. Process. Technol. 2011, 211, 475–481. [Google Scholar] [CrossRef]
- Taylor, G.I. The formation and enlargement of a circular hole in a thin plastic sheet. Q. J. Mech. Appl. Math. 1948, 1, 103–124. [Google Scholar] [CrossRef] [Green Version]
- Budiansky, B.; Mangasarian, O.L. Plastic Stress Concentration at a Circular Hole in an Infinite Sheet Subjected to Equal Biaxial Tension. J. Appl. Mech. 1960, 27, 59–64. [Google Scholar] [CrossRef]
- Parmar, A.; Mellor, P.B. Plastic expansion of a circular hole in sheet metal subjected to biaxial tensile stress. Int. J. Mech. Sci. 1978, 20, 707–720. [Google Scholar] [CrossRef]
- Hill, R. Theoretical plasticity of textured aggregates. In Mathematical Proceedings of the Cambridge Philosophical Society; Cambridge University Press: Cambridge, UK, 1979; Volume 85, pp. 179–191. [Google Scholar]
- Durban, D. Radial stressing of thin sheets with plastic anisotropy. Int. J. Mech. Sci. 1986, 28, 801–813. [Google Scholar] [CrossRef]
- Durban, D. On two stress concentration problems in plane-stress anisotropic plasticity. Int. J. Solids Struct. 1987, 23, 469–484. [Google Scholar] [CrossRef]
- Durban, D.; Birman, V. On the elasto-plastic stress concentration at a circular hole in an anisotropic sheet. Int. J. Mech. Sci. 1982, 23, 469–484. [Google Scholar] [CrossRef]
- Hosford, W.F. A Generalized Isotropic Yield Criterion. J. Appl. Mech. 1972, 39, 607–609. [Google Scholar] [CrossRef]
- Karafillis, A.P.; Boyce, M.C. A general anisotropic yield criterion using bounds and a transformation weighting tensor. J. Mech. Phys. Solids 1993, 41, 1859–1886. [Google Scholar] [CrossRef]
- Cohen, T.; Masri, R.; Durban, D. Analysis of circular hole expansion with generalized yield criteria. Int. J. Solids Struct. 2009, 46, 3643–3650. [Google Scholar] [CrossRef] [Green Version]
- Hill, R. A Theory of the Yielding and Plastic Flow of Anisotropic Metals. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 1948, 193, 281–297. [Google Scholar]
- Barlat, F.; Lian, K. Plastic behavior and stretchability of sheet metals. Part I: A yield function for orthotropic sheets under plane stress conditions. Int. J. Plast. 1989, 5, 51–66. [Google Scholar] [CrossRef]
- Barlat, F.; Brem, J.C.; Yoon, J.W.; Chung, K.; Dick, R.E.; Lege, D.J.; Pourboghrat, F.; Choi, S.-H.; Chu, E. Plane stress yield function for aluminum alloy sheets—Part 1: Theory. Int. J. Plast. 2003, 19, 1297–1319. [Google Scholar] [CrossRef]
- Ha, J.; Dirian, M.; Dunn, C.; Korkolis, Y.P. Failure of AA6022-T4 sheets in hole-expansion after uniaxial prestrain. In AIP Conference Proceedings; AIP Publishing LLC: College Park, MD, USA, 2019; Volume 2113, p. 180005. [Google Scholar]
- Lee, J.-Y.; Lee, K.-J.; Lee, M.-G.; Kuwabara, T.; Barlat, F. Numerical modeling for accurate prediction of strain localization in hole expansion of a steel sheet. Int. J. Solids Struct. 2019, 156–157, 107–118. [Google Scholar] [CrossRef]
- Worswick, M.J.; Finn, M.J. The numerical simulation of stretch flange forming. Int. J. Plast. 2000, 16, 701–720. [Google Scholar] [CrossRef]
- Chung, K.; Ma, N.; Park, T.; Kim, D.; Yoo, D.; Kim, C. A modified damage model for advanced high strength steel sheets. Int. J. Plast. 2011, 27, 1485–1511. [Google Scholar] [CrossRef]
- Kuwabara, T.; Mori, T.; Asano, M.; Hakoyama, T. Material modeling of 6016-O and 6016-T4 aluminum alloy sheets and application to hole expansion forming simulation. Int. J. Plast. 2017, 93, 164–186. [Google Scholar] [CrossRef]
- Hakoyama, T.; Coppieters, S.; Kuwabara, T. Hole expansion forming analysis of mild steel sheet using a material model based on crystal plasticity. In AIP Conference Proceedings; AIP Publishing LLC: College Park, MD, USA, 2019; Volume 2113, p. 160005. [Google Scholar] [CrossRef]
- Kuwabara, T.; Ichikawa, K. Hole expansion simulation considering the differential hardening of a sheet metal. Rom. J. Tech. Sci. Appl. Mech. 2015, 60, 63–81. [Google Scholar]
- Oliveira, M.C.; Neto, D.M.; Alves, J.L.; Menezes, L.F. Study on the influence of the yield surface shape in the hole expansion test. IOP Conf. Ser. Mater. Sci. Eng. 2020, 967, 012085. [Google Scholar] [CrossRef]
- Logan, R.W.; Hosford, W.F. Upper-bound anisotropic yield locus calculations assuming <111>-pencil glide. Int. J. Mech. Sci. 1980, 22, 419–430. [Google Scholar] [CrossRef] [Green Version]
- Ha, J.; Baral, M.; Korkolis, Y.P. Plastic anisotropy and ductile fracture of bake-hardened AA6013 aluminum sheet. Int. J. Solids Struct. 2018, 155, 123–139. [Google Scholar] [CrossRef]
- Ha, J.; Baral, M.; Korkolis, Y.P. Ductile fracture of an aluminum sheet under proportional loading. J. Mech. Phys. Solids 2019, 132, 103685. [Google Scholar] [CrossRef]
- Tian, H.; Brownell, B.; Baral, M.; Korkolis, Y.P. Earing in cup-drawing of anisotropic Al-6022-T4 sheets. Int. J. Mater. Form. 2017, 10, 329–343. [Google Scholar] [CrossRef]
- Baral, M.; Ha, J.; Korkolis, Y.P. Plasticity and ductile fracture modeling of an Al–Si–Mg die-cast alloy. Int. J. Fract. 2019, 216, 101–121. [Google Scholar] [CrossRef]
- Baral, M.; Hama, T.; Knudsen, E.; Korkolis, Y.P. Plastic deformation of commercially-pure titanium: Experiments and modeling. Int. J. Plast. 2018, 105, 164–194. [Google Scholar] [CrossRef]
- Dick, C.P.; Korkolis, Y.P. Anisotropy of thin-walled tubes by a new method of combined tension and shear loading. Int. J. Plast. 2015, 71, 87–112. [Google Scholar] [CrossRef] [Green Version]
- Coppieters, S.; Kuwabara, T. Identification of Post-Necking Hardening Phenomena in Ductile Sheet Metal. Exp. Mech. 2014, 54, 1355–1371. [Google Scholar] [CrossRef] [Green Version]
- Coppieters, S.; Cooreman, S.; Sol, H.; Van Houtte, P.; Debruyne, D. Identification of the post-necking hardening behaviour of sheet metal by comparison of the internal and external work in the necking zone. J. Mater. Process. Technol. 2011, 211, 545–552. [Google Scholar] [CrossRef]
- Korkolis, Y.P.; Barlat, F.; Kuwabara, T. Simplified representations of multiaxial test results in plasticity. In Proceedings of the 5th International Conference on Material Modeling (ICMM5), Rome, Italy, 14–16 June 2017. [Google Scholar]
- Ha, J.; Baral, M.; Korkolis, Y. Ductile fracture of an Al-Si-Mg die-casting aluminum alloy. Procedia Eng. 2017, 207, 2024–2029. [Google Scholar] [CrossRef]
- 3DS Simulia. Abaqus User Manual; Dassault Systèmes Simulia Corp.: Providence, RI, USA, 2019. [Google Scholar]
- Giagmouris, T.; Kyriakides, S.; Korkolis, Y.P.; Lee, L.-H. On the localization and failure in aluminum shells due to crushing induced bending and tension. Int. J. Solids Struct. 2010, 47, 2680–2692. [Google Scholar] [CrossRef] [Green Version]
- Korkolis, Y.P.; Kyriakides, S. Hydroforming of anisotropic aluminum tubes: Part I experiments. Int. J. Mech. Sci. 2011, 53, 75–82. [Google Scholar] [CrossRef]
- Korkolis, Y.P.; Kyriakides, S. Hydroforming of anisotropic aluminum tubes: Part II analysis. Int. J. Mech. Sci. 2011, 53, 83–90. [Google Scholar] [CrossRef]
Elastic Properties | |||||||
---|---|---|---|---|---|---|---|
Young’s Modulus | E = 70 GPa | Poisson’s Ratio | ν = 0.3 | ||||
Anisotropic Plastic Properties (Wp = 20 MJ/m3) | |||||||
Uniaxial tension | RD | 30° | 60° | 90° | |||
1.000 | 1.016 | 0.976 | 0.954 | ||||
r-value | 0.793 | 0.465 | 0.352 | 0.510 | |||
Plane-strain tension | RD | 45° | 90° | ||||
1.096 | 1.019 | 0.978 |
m = 8 | ||||||||
---|---|---|---|---|---|---|---|---|
Calib1 | 0.970 | 1.054 | 1.253 | 1.128 | 1.065 | 1.253 | 0.940 | 0.909 |
Calib2 | 0.968 | 1.022 | 1.067 | 1.091 | 1.014 | 0.977 | 0.914 | 1.064 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ha, J.; Korkolis, Y.P. Hole-Expansion: Sensitivity of Failure Prediction on Plastic Anisotropy Modeling. J. Manuf. Mater. Process. 2021, 5, 28. https://doi.org/10.3390/jmmp5020028
Ha J, Korkolis YP. Hole-Expansion: Sensitivity of Failure Prediction on Plastic Anisotropy Modeling. Journal of Manufacturing and Materials Processing. 2021; 5(2):28. https://doi.org/10.3390/jmmp5020028
Chicago/Turabian StyleHa, Jinjin, and Yannis P. Korkolis. 2021. "Hole-Expansion: Sensitivity of Failure Prediction on Plastic Anisotropy Modeling" Journal of Manufacturing and Materials Processing 5, no. 2: 28. https://doi.org/10.3390/jmmp5020028
APA StyleHa, J., & Korkolis, Y. P. (2021). Hole-Expansion: Sensitivity of Failure Prediction on Plastic Anisotropy Modeling. Journal of Manufacturing and Materials Processing, 5(2), 28. https://doi.org/10.3390/jmmp5020028