Processability and Physical Properties of Compatibilized Recycled HDPE/Rice Husk Biocomposites
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Torque Rheometry
2.3. Test Specimen Preparation
2.4. Characterization and Evaluation
2.4.1. Rice Husk Granulometry
2.4.2. Scanning Electron Microscopy (SEM)
2.4.3. Differential Scanning Calorimetry (DSC)
2.4.4. Thermogravimetric Analysis (TGA)
2.4.5. Mechanical Properties
3. Results and Discussion
3.1. Rice Husk Characterization
3.2. Torque Rheometry and Processability Analysis
3.3. Scanning Electron Microscopy
3.4. Thermal Properties
3.5. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hopewell, J.; Dvorak, R.; Kosior, E. Plastics recycling: Challenges and opportunities. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2115–2126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marish Kumar, P.; Indu Sailaja, K.A.; Lydia, J.; Suganya, D. Automated plastic bottle recycling machine. Test Eng. Manag. 2020, 82, 5402–5408. [Google Scholar]
- Zheng, J.; Suh, S. Strategies to reduce the global carbon footprint of plastics. Nat. Clim. Chang. 2019, 9, 374–378. [Google Scholar] [CrossRef]
- Hidalgo-Crespo, J.; Amaya, J.L.; Soto, M.; Caamaño-Gordillo, L. Domestic Plastic Waste in the City of Guayaquil: Generation Rate and Classification. In Proceedings of the 19th LACCEI International Multi-Conference for Engineering, Education, and Technology, Buenos Aires, Argentina, 21–23 July 2021. [Google Scholar]
- Yu, M.; Mao, H.; Huang, R.; Ge, Z.; Tian, P.; Sun, L.; Wu, Q.; Sun, K. Mechanical and thermal properties of r-high density polyethylene composites reinforced with wheat straw particleboard dust and basalt fiber. Int. J. Polym. Sci. 2018, 2018, 5101937. [Google Scholar] [CrossRef] [Green Version]
- Gholampour, A.; Ozbakkaloglu, T. A review of natural fiber composites: Properties, modification and processing techniques, characterization, applications. J. Mater. Sci. 2020, 55, 829–892. [Google Scholar] [CrossRef]
- Youssef, A.M.; El-Gendy, A.; Kamel, S. Evaluation of corn husk fibers reinforced recycled low density polyethylene composites. Mater. Chem. Phys. 2015, 152, 26–33. [Google Scholar] [CrossRef]
- Chen, R.S.; Ahmad, S. Mechanical performance and flame retardancy of rice husk/organoclay-reinforced blend of recycled plastics. Mater. Chem. Phys. 2017, 198, 57–65. [Google Scholar] [CrossRef]
- Chun, K.S.; Husseinsyah, S. Agrowaste-based composites from cocoa pod husk and polypropylene. J. Thermoplast. Compos. Mater. 2016, 29, 1332–1351. [Google Scholar] [CrossRef]
- Obasi, H.C. Peanut husk filled polyethylene composites: Effects of filler content and compatibilizer on properties. J. Polym. 2015, 2015, 189289. [Google Scholar] [CrossRef] [Green Version]
- Koay, S.C.; Chan, M.Y.; Pang, M.M.; Tshai, K.Y. Influence of filler loading and palm oil-based green coupling agent on torque rheological properties of polypropylene/cocoa pod husk composites. Adv. Polym. Technol. 2018, 37, 2246–2252. [Google Scholar] [CrossRef]
- Maraveas, C. Production of sustainable and biodegradable polymers from agricultural waste. Polymers 2020, 12, 1127. [Google Scholar] [CrossRef] [PubMed]
- Acquavia, M.; Pascale, R.; Martelli, G.; Bondoni, M.; Bianco, G. Natural polymeric materials: A solution to plastic pollution from the agro-food sector. Polymers 2021, 13, 158. [Google Scholar] [CrossRef] [PubMed]
- Salazar-Cruz, B.A.; Chávez-Cinco, M.Y.; Morales-Cepeda, A.B.; Ramos-Galván, C.E.; Rivera-Armenta, J.L. Evaluation of thermal properties of composites prepared from pistachio shell particles treated chemically and polypropylene. Molecules 2022, 27, 426. [Google Scholar] [CrossRef] [PubMed]
- Suhot, M.A.; Hassan, M.Z.; Aziz, S.A.; Md Daud, M.Y. Recent progress of rice husk reinforced polymer composites: A review. Polymers 2021, 13, 2391. [Google Scholar] [CrossRef]
- Agricultural Public Information System (SIPA). Food Balance Sheet; SIPA: Quito, Ecuador, 2021. [Google Scholar]
- Agricultural Public Information System (SIPA). Surface and Production—INEC; SIPA: Quito, Ecuador, 2021. [Google Scholar]
- Chand, N.; Fahim, M. Natural Fibers and Their Composites. In Tribology of Natural Fiber Polymer Composites; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–59. [Google Scholar]
- López-Alonso, M.; Martín-Morales, M.; Martínez-Echevarría, M.J.; Agrela, F.; Zamorano, M. Residual Biomasses as Aggregates Applied in Cement-Based Materials. In Waste and Byproducts in Cement-Based Materials; Elsevier: Amsterdam, The Netherlands, 2021; pp. 89–137. [Google Scholar]
- Kumar, M.; Mishra, P.K.; Upadhyay, S.N. Thermal degradation of rice husk: Effect of pre-treatment on kinetic and thermodynamic parameters. Fuel 2020, 268, 117164. [Google Scholar] [CrossRef]
- Singh, B. Rice Husk Ash. In Waste and Supplementary Cementitious Materials in Concrete; Elsevier: Amsterdam, The Netherlands, 2018; pp. 417–460. [Google Scholar]
- Chindaprasirt, P.; Cao, T. The Properties and Durability of High-Pozzolanic Industrial by-Products Content Concrete Masonry Blocks. In Eco-Efficient Masonry Bricks and Blocks; Elsevier: Amsterdam, The Netherlands, 2015; pp. 191–214. [Google Scholar]
- Gao, Y.; Guo, X.; Liu, Y.; Fang, Z.; Zhang, M.; Zhang, R.; You, L.; Li, T.; Liu, R.H. A full utilization of rice husk to evaluate phytochemical bioactivities and prepare cellulose nanocrystals. Sci. Rep. 2018, 8, 10482. [Google Scholar] [CrossRef]
- Martí-Ferrer, F.; Vilaplana, F.; Ribes-Greus, A.; Benedito-Borrás, A.; Sanz-Box, C. Flour rice husk as filler in block copolymer polypropylene: Effect of different coupling agents. J. Appl. Polym. Sci. 2006, 99, 1823–1831. [Google Scholar] [CrossRef]
- Fávaro, S.L.; Lopes, M.S.; Vieira de Carvalho Neto, A.G.; Rogério de Santana, R.; Radovanovic, E. Chemical, morphological, and mechanical analysis of rice husk/post-consumer polyethylene composites. Compos. Part A Appl. Sci. Manuf. 2010, 41, 154–160. [Google Scholar] [CrossRef]
- Chen, R.S.; Ahmad, S.; Gan, S. Characterization of rice husk-incorporated recycled thermoplastic blend composites. BioResources 2016, 11, 8470–8482. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A. Performance modifying techniques for recycled thermoplastics. Resour. Conserv. Recycl. 2021, 175, 105887. [Google Scholar] [CrossRef]
- Panthapulakkal, S.; Sain, M.; Law, S. Effect of coupling agents on rice-husk-filled HDPE extruded profiles. Polym. Int. 2005, 54, 137–142. [Google Scholar] [CrossRef]
- De Carvalho, F.P.; Isabel Felisberti, M.; Soto Oviedo, M.A.; Davila Vargas, M.; Farah, M.; Fortes Ferreira, M.P. Rice husk/poly(propylene-co-ethylene) composites: Effect of different coupling agents on mechanical, thermal, and morphological properties. J. Appl. Polym. Sci. 2012, 123, 3337–3344. [Google Scholar] [CrossRef]
- Ari, G.A.; Aydin, I. Rheological and fusion behaviors of PVC micro- and nano-composites evaluated from torque rheometer data. J. Vinyl Addit. Technol. 2010, 16, 223–228. [Google Scholar] [CrossRef]
- Orji, B.O.; McDonald, A.G. Evaluation of the mechanical, thermal and rheological properties of recycled polyolefins rice-hull composites. Materials 2020, 13, 667. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Xu, Y.; Shivkumar, S. Microstructure and tensile properties of various varieties of rice husk. J. Sci. Food Agric. 2018, 98, 1061–1070. [Google Scholar] [CrossRef] [PubMed]
- Bie, R.S.; Song, X.F.; Liu, Q.Q.; Ji, X.Y.; Chen, P. Studies on effects of burning conditions and rice husk ash (rha) blending amount on the mechanical behavior of cement. Cem. Concr. Compos. 2015, 55, 162–168. [Google Scholar] [CrossRef]
- Li, X.-Y.; Guo, T.-S.; Li, M.-F.; Peng, F. Comparison of structure, thermal stability, and pyrolysis products of lignin extracted with chcl-formic acid/lactic acid systems. J. Mater. Res. Technol. 2021, 14, 841–850. [Google Scholar] [CrossRef]
- El-Sayed, S. Thermal decomposition, kinetics and combustion parameters determination for two different sizes of rice husk using TGA. Eng. Agric. Environ. Food 2019, 12, 460–469. [Google Scholar] [CrossRef]
- Amit, T.A.; Roy, R.; Raynie, D.E. Thermal and structural characterization of two commercially available technical lignins for potential depolymerization via hydrothermal liquefaction. Curr. Res. Green Sustain. Chem. 2021, 4, 100106. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Rigail-Cedeño, A.; Vera-Sorroche, J.; García-Mejía, G.; Intriago, R. Effect of the intercalation and dispersion of organoclays on energy demand in the extrusion of recycled HDPE/PP nanocomposites. Energies 2022, 15, 859. [Google Scholar] [CrossRef]
- Sisanth, K.S.; Thomas, M.G.; Abraham, J.; Thomas, S. General Introduction to Rubber Compounding. In Progress in Rubber Nanocomposites; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–39. [Google Scholar]
- Manaia, J.P.; Manaia, A. Interface modification, water absorption behaviour and mechanical properties of injection moulded short hemp fiber-reinforced thermoplastic composites. Polymers 2021, 13, 1638. [Google Scholar] [CrossRef] [PubMed]
- Barczewski, M.; Lewandowski, K.; Rybarczyk, D.; Kloziński, A. Rheological and single screw extrusion processability studies of isotactic polypropylene composites filled with basalt powder. Polym. Test. 2020, 91, 106768. [Google Scholar] [CrossRef]
- Freire, E.; Bianchi, O.; Monteiro, E.E.C.; Reis Nunes, R.C.; Forte, M.C. Processability of PVDF/PMMA blends studied by torque rheometry. Mater. Sci. Eng. C 2009, 29, 657–661. [Google Scholar] [CrossRef]
- Monte, S.J. Neoalkoxy titanate and zirconate coupling agent additives in thermoplastics. Polym. Polym. Compos. 2002, 10, 121–172. [Google Scholar] [CrossRef]
- Agrawal, P.; Rodrigues, A.W.B.; Araújo, E.M.; Mélo, T.J.A. Influence of reactive compatibilizers on the rheometrical and mechanical properties of PA6/LDPE and PA6/HDPE blends. J. Mater. Sci. 2010, 45, 496–502. [Google Scholar] [CrossRef]
- Hong, H.; Li, X.; Liu, H.; Zhang, H.; He, H.; Xu, H.; Jia, D. Transform rice husk and recycled polyethylene into high performance composites: Using a novel compatibilizer to infiltratively enhance the interfacial interactions. Prog. Rubber Plast. Recycl. Technol. 2016, 32, 253–268. [Google Scholar] [CrossRef]
- Awang, M.; Wan Mohd, W.R. Comparative studies of titanium dioxide and zinc oxide as a potential filler in polypropylene reinforced rice husk composite. IOP Conf. Ser. Mater. Sci. Eng. 2018, 342, 012046. [Google Scholar] [CrossRef]
- Chen, R.S.; Ahmad, S. Extrusion processing of a high fibre loading of agrowaste in recycled polyolefin biocomposite. J. Thermoplast. Compos. Mater. 2021, 34, 40–54. [Google Scholar] [CrossRef]
- Chen, R.S.; Ahmad, S.; Gan, S.; Salleh, M.N.; Ab Ghani, M.H.; Tarawneh, M.A. Effect of polymer blend matrix compatibility and fibre reinforcement content on thermal stability and flammability of ecocomposites made from waste materials. Thermochim. Acta 2016, 640, 52–61. [Google Scholar] [CrossRef]
- Chen, R.S.; Ahmad, S. Characterization of Rice Husk Biofibre-Reinforced Recycled Thermoplastic Blend Biocomposite. In Composites from Renewable and Sustainable Materials; IntechOpen: London, UK, 2016. [Google Scholar]
- Camacho, W.; Karlsson, S. NIR, DSC, and FTIR as quantitative methods for compositional analysis of blends of polymers obtained from recycled mixed plastic waste. Polym. Eng. Sci. 2001, 41, 1626–1635. [Google Scholar] [CrossRef]
- Yao, F.; Wu, Q.; Lei, Y.; Xu, Y. Rice straw fiber-reinforced high-density polyethylene composite: Effect of fiber type and loading. Ind. Crops Prod. 2008, 28, 63–72. [Google Scholar] [CrossRef]
- Abdelwahab, M.A.; Misra, M.; Mohanty, A.K. Injection molded biocomposites from polypropylene and lignin: Effect of compatibilizers on interfacial adhesion and performance. Ind. Crops Prod. 2019, 132, 497–510. [Google Scholar] [CrossRef]
- Pokharel, P.; Bae, H.; Lim, J.G.; Lee, K.Y.; Choi, S. Effects of titanate treatment on morphology and mechanical properties of graphene nanoplatelets/high density polyethylene nanocomposites. J. Appl. Polym. Sci. 2015, 132, 42073. [Google Scholar] [CrossRef]
- Raghu, N.; Kale, A.; Chauhan, S.; Aggarwal, P.K. Rice husk reinforced polypropylene composites: Mechanical, morphological and thermal properties. J. Indian Acad. Wood Sci. 2018, 15, 96–104. [Google Scholar] [CrossRef]
- Chen, R.S.; Ab Ghani, M.H.; Salleh, M.N.; Ahmad, S.; Tarawneh, M.A. Mechanical, water absorption, and morphology of recycled polymer blend rice husk flour biocomposites. J. Appl. Polym. Sci. 2015, 132, 41494. [Google Scholar] [CrossRef]
- Yang, H.S.; Kim, H.J.; Park, H.J.; Lee, B.J.; Hwang, T.S. Effect of compatibilizing agents on rice-husk flour reinforced polypropylene composites. Compos. Struct. 2007, 77, 45–55. [Google Scholar] [CrossRef]
- Sadik, W.A.A.; El Demerdash, A.G.M.; Abbas, R.; Bedir, A. Effect of nanosilica and nanoclay on the mechanical, physical, and morphological properties of recycled linear low density polyethylene/rice husk composites. J. Polym. Environ. 2021, 29, 1600–1615. [Google Scholar] [CrossRef]
- Yang, H.S.; Wolcott, M.P.; Kim, H.S.; Kim, S.; Kim, H.J. Effect of different compatibilizing agents on the mechanical properties of lignocellulosic material filled polyethylene bio-composites. Compos. Struct. 2007, 79, 369–375. [Google Scholar] [CrossRef]
- Rodríguez, C.A.; Medina, J.A.; Reinecke, H. New thermoplastic materials reinforced with cellulose based fibers. J. Appl. Polym. Sci. 2003, 90, 3466–3472. [Google Scholar] [CrossRef]
References | Cellulose | Hemicellulose | Lignin | Moisture | Silica |
---|---|---|---|---|---|
Singh [21] | 50 | - | 25–30 | 10–15 | 15–20 |
Chindaprasirt and Cao [22] | 40 | - | 30 | - | 20 |
Gao et al. [23] | 35–40 | 15–20 | 20–25 | - | - |
Martí-Ferrer et al. [24] | 45 | 19 | 19.5 | 14 | 15 |
Composite | rHDPE | RH | MAEO | NAT | EGMA |
---|---|---|---|---|---|
rHDPE | 100 | - | - | - | - |
rHDPE/RH0 | 80.0 | 20 | - | - | - |
rHDPE/RH1 | 75.0 | 20 | 5 | - | - |
rHDPE/RH2 | 78.5 | 20 | - | 1.5 | - |
rHDPE/RH3 | 75.0 | 20 | - | - | 5 |
Composite | Loading/Max Torque (N∙m) | Specific Energy (kN∙m/kg) | Viscosity at 60 rpm (Pa∙s) | Time Needed Stability (Min) | Processing Time (Min) |
---|---|---|---|---|---|
rHDPE | 53.4 ± 0.7 | 4656.8 ± 13.6 | 6473.8 | 13.5 | 15 |
rHDPE/RH0 | 60.4 ± 1.0 | 3790.8 ± 4.6 | 6113.5 | 12.5 | 15 |
rHDPE/RH1 | 42.3 ± 0.4 | 3642.4 ± 23.3 | 5330.7 | 12.0 | 15 |
rHDPE/RH2 | 49.1 ± 0.6 | 3837.1 ± 21.2 | 5055.0 | - | 15 |
rHDPE/RH3 | 45.3± 0.1 | 3755.7 ± 12.9 | 5675.0 | 11.5 | 15 |
Composite | Tm (°C) | Tc (°C) | Hf (J∙g−1) | Hc (J∙g−1) | Xc (%) |
---|---|---|---|---|---|
rHDPE | 134.23 ± 0.99 | 115.14 ± 0.97 | 157.90 ± 5.10 | 198.70 ± 1.30 | 53.89 ± 0.87 |
rHDPE/RH0 | 134.74 ± 0.69 | 114.70 ± 0.91 | 125.85 ± 1.75 | 161.25 ± 2.65 | 53.69 ± 0.75 |
rHDPE/RH1 | 135.33 ± 0.60 | 115.84 ± 0.53 | 124.95 ± 0.55 | 151.40 ± 0.60 | 56.86 ± 0.25 |
rHDPE/RH2 | 134.10 ± 0.38 | 114.55 ± 0.26 | 129.40 ± 0.80 | 157.50 ± 0.79 | 56.26 ± 0.35 |
rHDPE/RH3 | 133.14 ± 0.87 | 116.41 ± 0.09 | 122.50 ± 4.57 | 157.25 ± 0.35 | 53.90 ± 1.66 |
Composite | Ultimate Strength (MPa) | Young’s Modulus (GPa) | Impact Strength (J∙m−1) |
---|---|---|---|
rHDPE | 23.8 ± 0.1 | 0.93 ± 0.1 | 173.3 ± 7.9 |
rHDPE/RH0 | 20.5 ± 0.4 | 1.10 ± 0.0 | 45.38 ± 2.1 |
rHDPE/RH1 | 17.7 ± 0.4 | 1.02 ± 0.1 | 70.94 ± 3.6 |
rHDPE/RH2 | 27.5 ± 0.5 | 0.99 ± 0.1 | 59.23 ± 2.2 |
rHDPE/RH3 | 24.5 ± 0.3 | 1.04 ± 0.1 | 87.18 ± 5.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rigail-Cedeño, A.; Lazo, M.; Gaona, J.; Delgado, J.; Tapia-Bastidas, C.V.; Rivas, A.L.; Adrián, E.; Perugachi, R. Processability and Physical Properties of Compatibilized Recycled HDPE/Rice Husk Biocomposites. J. Manuf. Mater. Process. 2022, 6, 67. https://doi.org/10.3390/jmmp6040067
Rigail-Cedeño A, Lazo M, Gaona J, Delgado J, Tapia-Bastidas CV, Rivas AL, Adrián E, Perugachi R. Processability and Physical Properties of Compatibilized Recycled HDPE/Rice Husk Biocomposites. Journal of Manufacturing and Materials Processing. 2022; 6(4):67. https://doi.org/10.3390/jmmp6040067
Chicago/Turabian StyleRigail-Cedeño, Andrés, Miriam Lazo, Julio Gaona, Joshua Delgado, Clotario V. Tapia-Bastidas, Ana L. Rivas, Estephany Adrián, and Rodrigo Perugachi. 2022. "Processability and Physical Properties of Compatibilized Recycled HDPE/Rice Husk Biocomposites" Journal of Manufacturing and Materials Processing 6, no. 4: 67. https://doi.org/10.3390/jmmp6040067
APA StyleRigail-Cedeño, A., Lazo, M., Gaona, J., Delgado, J., Tapia-Bastidas, C. V., Rivas, A. L., Adrián, E., & Perugachi, R. (2022). Processability and Physical Properties of Compatibilized Recycled HDPE/Rice Husk Biocomposites. Journal of Manufacturing and Materials Processing, 6(4), 67. https://doi.org/10.3390/jmmp6040067