Electrical Smoothing of the Powder Bed Surface in Laser-Based Powder Bed Fusion of Metals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup and Framework Conditions
2.2. Experimental Design and Execution
- Shallow pocket: single powder layer with local impairments
- Deep pocket: multiple stacked powder layers
- Deep pocket with an obstacle: multiple stacked powder layers with a protruding body
- Preparation and positioning of the sample tray on the built platform;
- Flooding the enclosure with argon to simulate the conditions of the PBF-LB/M process and to prevent the metal powder from reacting with oxygen as a result of the high voltage applied;
- Switching on the electric smoother and passing over the sample trays with the defined parameters;
- Switching off the electric smoother;
- Flooding the enclosure with atmospheric gas and removing the samples;
- Metrological analysis of the metal powder in the sample trays.
2.3. Metrological Analysis of the Powder Bed in the Sample Trays
3. Results and Discussion
3.1. Investigation on the Influcence of the Sample Handling
3.2. Investigation on the Achievable Powder Bed Surface Quality
3.3. Investigation on the Compensation of Obstacles in the Powder Bed
3.4. Surface Structuring after Smoothing
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krauss, H. Qualitätssicherung Beim Laserstrahlschmelzen durch Schichtweise Thermografische in-Process-Überwachung; Herbert Utz Verlag GmbH: München, Germany, 2016. [Google Scholar]
- Wohlers, T.; Campbell, R.I.; Diegel, O.; Kowen, J.; Mostow, N. Wohlers Report: 3D Printing and Additive Manufacturing Global State of Industry; Wohlers Associates: Fort Collins, CO, USA, 2022. [Google Scholar]
- Yadroitsev, I. Selective Laser Melting: Direct Manufacturing of 3D-Objects by Selective Laser Melting of Metal Powders; LAP Lambert Academic Publishing: Saarbrücken, Germany, 2009. [Google Scholar]
- Kruth, J.P.; Mercelis, P.; van Vaerenbergh, J.; Froyen, L.; Rombouts, M. Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp. J. 2005, 11, 26–36. [Google Scholar] [CrossRef]
- Le, T.P.; Wang, X.; Davidson, K.P.; Fronda, J.E.; Seita, M. Experimental analysis of powder layer quality as a function of feedstock and rerecoating strategies. Addit. Manuf. 2021, 39, 101890. [Google Scholar]
- Seyda, V. Werkstoff- und Prozessverhalten Von Metallpulvern in der Laseradditiven Fertigung; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Snow, Z.; Martukanitz, R.; Joshi, S. On the development of powder spreadability metrics and feedstock requirements for powder bed fusion additive manufacturing. Addit. Manuf. 2019, 28, 78–86. [Google Scholar] [CrossRef]
- Weber, S.; Montero, J.; Bleckmann, M.; Paetzold, K. Support-free metal additive manufacturing: A structured review on the state of the art in academia and industry. Proc. Des. Soc. 2021, 1, 2811–2820. [Google Scholar] [CrossRef]
- Dowling, L.; Kennedy, J.; O’Shaughnessy, S.; Trimble, D. A review of critical repeatability and reproducibility issues in powder bed fusion. Mater. Des. 2020, 186, 108346. [Google Scholar] [CrossRef]
- Sehhat, M.H.; Mahdianikhotbesara, A. Powder spreading in laser-powder bed fusion process. Granul. Matter 2021, 23, 89. [Google Scholar] [CrossRef]
- Spierings, A.B.; Herres, N.; Levy, G. Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts. Rapid Prototyp. J. 2017, 17, 195–202. [Google Scholar] [CrossRef]
- Phua, A.; Cook, P.S.; Davies, C.H.J.; Delaney, G.W. Smart rerecoating: A digital twin framework for optimisation and control of powder spreading in metal additive manufacturing. J. Manuf. Process. 2023, 99, 382–391. [Google Scholar] [CrossRef]
- Yuasa, K.; Tagami, M.; Yonehara, M.; Ikeshoji, T.T.; Takeshita, K.; Aoki, H.; Kyogoku, H. Influences of powder characteristics and rerecoating conditions on surface morphology of powder bed in metal additive manufacturing. Int. J. Adv. Manuf. Technol. 2021, 115, 3919–3932. [Google Scholar] [CrossRef]
- Phua, A.; Doblin, C.; Owen, P.; Davies, C.H.J.; Delaney, G.W. The effect of recoater geometry and speed on granular convection and size segregation in powder bed fusion. Powder Technol. 2021, 394, 632–644. [Google Scholar] [CrossRef]
- Wang, D.; Yang, Y.; Yi, Z.; Su, X. Research on the fabricating quality optimization of the overhanging surface in SLM process. Int. J. Adv. Manuf. Technol. 2013, 65, 1471–1484. [Google Scholar] [CrossRef]
- Foster, B.K.; Reutzel, E.W.; Nassar, A.R.; Hall, B.T.; Brown, S.W.; Dickman, C.J. Optical, layerwise monitoring of powder bed fusion. In Proceedings of the 26th Annual International Solid Freeform Fabrication Symposium, Austin, TX, USA, 10–12 August 2015. [Google Scholar]
- Skalon, M.; Meier, B.; Gruberbauer, A.; Amancio-Filho, S.T.; Sommitsch, C. Stability of a Melt Pool during 3D-Printing of an Unsupported Steel Component and Its Influence on Roughness. Materials 2020, 13, 808. [Google Scholar] [CrossRef] [PubMed]
- Mahr, A.; Schütt, T.; Rosnitschek, T.; Tremmel, S.; Döpper, F. Evaluation of Powder- and Extrusion-Based Metal Additive Manufacturing Processes for the Sustainable Fabrication of Spare Parts in Electromobility. Sustainability 2024, 16, 3425. [Google Scholar] [CrossRef]
- Desai, P.S.; Mehta, A.; Dougherty, P.S.M.; Higgs, C.F. A rheometry based calibration of a first-order DEM model to generate virtual avatars of metal Additive Manufacturing (AM) powders. Powder Technol. 2019, 342, 441–456. [Google Scholar] [CrossRef]
- Foerster, J.; Michatz, M.; Binder, M.; Frey, A.; Seidel, C.; Schlick, G.; Schilp, J. Electrostatic powder attraction for the development of a novel rerecoating system for metal powder bed-based additive manufacturing. J. Electrost. 2022, 115, 103641. [Google Scholar] [CrossRef]
- Meier, C.; Weissbach, R.; Weinberg, J.; Wall, W.A.; John Hart, A. Modeling and characterization of cohesion in fine metal powders with a focus on additive manufacturing process simulations. Powder Technol. 2019, 343, 855–866. [Google Scholar] [CrossRef]
- Haferkamp, L.; Haudenschild, L.; Spierings, A.; Wegener, K.; Riener, K.; Ziegelmeier, S.; Leichtfried, G.J. The Influence of Particle Shape, Powder Flowability, and Powder Layer Density on Part Density in Laser Powder Bed Fusion. Metals 2021, 11, 418. [Google Scholar] [CrossRef]
- Anderson, I.E.; White, E.M.H.; Dehoff, R. Feedstock powder processing research needs for additive manufacturing development. Curr. Opin. Solid State Mater. Sci. 2018, 22, 8–15. [Google Scholar] [CrossRef]
- Hebert, R.J. Viewpoint: Metallurgical aspects of powder bed metal additive manufacturing. J. Mater. Sci. 2016, 51, 1165–1175. [Google Scholar] [CrossRef]
- Vock, S.; Klöden, B.; Kirchner, A.; Weißgärber, T.; Kieback, B. Powders for powder bed fusion: A review. Prog. Addit. Manuf. 2019, 4, 383–397. [Google Scholar] [CrossRef]
- Fedina, T.; Sundqvist, J.; Powell, J.; Kaplan, A.F.H. A comparative study of water and gas atomized low alloy steel powders for additive manufacturing. Addit. Manuf. 2020, 36, 101675. [Google Scholar] [CrossRef]
- Hoeges, S.; Zwiren, A.; Schade, C. Additive manufacturing using water atomized steel powders. Metal Powder Rep. 2017, 72, 111–117. [Google Scholar] [CrossRef]
- Pinkerton, A.J.; Li, L. Direct additive laser manufacturing using gas- and water-atomised H13 tool steel powders. Int. J. Adv. Manuf. Technol. 2005, 25, 471–479. [Google Scholar] [CrossRef]
- Sarno, B.; Heineck, D.; Heller, M.; Ibsen, S. Dielectrophoresis: Developments and applications from 2010 to 2020. Electrophoresis 2021, 42, 539–564. [Google Scholar] [CrossRef] [PubMed]
- Pethig, R. Review article-dielectrophoresis: Status of the theory, technology, and applications. Biomicrofluidics 2010, 4, 022811. [Google Scholar] [CrossRef]
- LaMarche, K.; Muzzio, F.; Shinbrot, T.; Glasser, B. Granular flow and dielectrophoresis: The effect of electrostatic forces on adhesion and flow of dielectric granular materials. Powder Technol. 2010, 199, 180–188. [Google Scholar] [CrossRef]
- Peta, K.; Bartkowiak, T.; Rybicki, M.; Galek, P.; Mendak, M.; Wieczorowski, M.; Brown, C. Scale-dependent wetting behavior of bioinspired lubricants on electrical discharge machined Ti6Al4V surfaces. Tribol. Int. 2024, 194, 109562. [Google Scholar] [CrossRef]
- DIN EN ISO 25178-2:2023-09; Geometrical Product Specifications (GPS)—Surface Texture: Areal—Part 2: Terms, Definitions and Surface Texture Parameters. DIN e. V.: Berlin, Germany, 2023.
- DIN EN ISO 4490:2018-08; Metallic Powders—Determination of Flow Rate by Means of a Calibrated Funnel (Hall Flowmeter). DIN e. V.: Berlin, Germany, 2018.
- DIN EN ISO 3923-1:2018-10; Metallic Powders—Determination of Apparent Density—Part 1: Funnel Method. DIN e. V.: Berlin, Germany, 2018.
- DIN EN ISO 3953:2011-05; Metallic Powders—Determination of Tap Density. DIN e. V.: Berlin, Germany, 2011.
d10 in µm | d50 in µm | d90 in µm | Flow Rate in s (DIN EN ISO 4490) | Fill Density in % (DIN EN ISO 3923-1) | Tap Density in g/cm3 (DIN EN ISO 3953) |
---|---|---|---|---|---|
19.2 | 32.0 | 42.5 | 35.3 | 57.3 | 63.1 |
Vertical Distance in mm | Travel Speed in mm/s | Sample Tray Design |
---|---|---|
0.5 | 15 | Shallow pocket Deep pocket Deep pocket with an obstacle |
1.0 | 25 | |
2.0 | 35 | |
5.0 | 50 |
Vertical Distance in mm | Travel Speed in mm/s | Structuring Detected |
---|---|---|
0.5 | 15 | Yes |
0.5 | 25 | No |
0.5 | 35 | No |
0.5 | 50 | Yes |
1 | 15 | No |
1 | 25 | No |
1 | 35 | No |
1 | 50 | Yes |
2 | 15 | Yes |
2 | 25 | Yes |
2 | 35 | No |
2 | 50 | Yes |
5 | 15 | Yes |
5 | 25 | Yes |
5 | 35 | No |
5 | 50 | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hofmann, A.; Grotz, T.; Köstler, N.; Mahr, A.; Döpper, F. Electrical Smoothing of the Powder Bed Surface in Laser-Based Powder Bed Fusion of Metals. J. Manuf. Mater. Process. 2024, 8, 112. https://doi.org/10.3390/jmmp8030112
Hofmann A, Grotz T, Köstler N, Mahr A, Döpper F. Electrical Smoothing of the Powder Bed Surface in Laser-Based Powder Bed Fusion of Metals. Journal of Manufacturing and Materials Processing. 2024; 8(3):112. https://doi.org/10.3390/jmmp8030112
Chicago/Turabian StyleHofmann, Andreas, Tim Grotz, Nico Köstler, Alexander Mahr, and Frank Döpper. 2024. "Electrical Smoothing of the Powder Bed Surface in Laser-Based Powder Bed Fusion of Metals" Journal of Manufacturing and Materials Processing 8, no. 3: 112. https://doi.org/10.3390/jmmp8030112
APA StyleHofmann, A., Grotz, T., Köstler, N., Mahr, A., & Döpper, F. (2024). Electrical Smoothing of the Powder Bed Surface in Laser-Based Powder Bed Fusion of Metals. Journal of Manufacturing and Materials Processing, 8(3), 112. https://doi.org/10.3390/jmmp8030112