Development of Multi-Part Field-Shapers for Magnetic Pulse Welding Using Nanostructured Cu-Nb Composite
Abstract
:1. Introduction
2. The Basics of the MPW Process and the Role of the Field-Shaper
3. Materials and Methods
3.1. Field-Shaper Design and Testing
3.2. FEM Modeling of Magnetic Field Generation with Different Field-Shapers
3.3. Experimental Study of Magnetic Field Generation
3.4. Magnetic Pulse Tube Forming and Welding
4. Results and Discussion
4.1. FEM Analysis
4.2. Magnetic Field Generation
4.3. MPW Experiment
5. Conclusions
- The use of a composite Cu-Nb wire led to an improved efficiency in the inductor system: the field-to-current maximum ratios were 56.3 T/MA for the two-slit FS and 50.6 T/MA for the four-slit FS, which are 31 and 18% higher, respectively, compared to the 43 T/MA ratio of an entirely steel FS. The experimental values were confirmed by an FEM analysis.
- In comparison with bronze field-shapers, Cu-Nb ones have longer lifetimes, being able to withstand at least tens of 50 T magnetic field pulses, whereas the bronze ones experience considerable thermal cracking after 5–10 pulses of a 50 T magnetic field.
- The use of a highly conductive composite material improves magnetic field homogeneity in the azimuthal direction inside the working channel of the two-slit FS: the difference between the maximum and minimum field values was 6% for the composite FS versus 9% for the steel FS (FEM).
- The magnetic pulse welding of a stainless STS410 steel tube and plug was performed using the new FS. An examination of the welds in areas of maximum and minimum field amplitude indicated a high level of azimuthal homogeneity in the obtained joints. The relative difference in weld lengths was 11% mm for the two-slit FS and 1.4% for the four-slit FS. This is higher than the 16% measured for the steel coil presented in the previous work.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kapil, A.; Sharma, A. Magnetic pulse welding: An efficient and environmentally friendly multi-material joining technique. J. Clean. Prod. 2015, 100, 35–58. [Google Scholar] [CrossRef]
- Krutikov, V.; Paranin, S.; Spirin, A.; Kazakov, A.; Aleksandrov, E. Fabrication of thin-walled iridium tubular articles by radial magnetic pulsed compaction and sintering of nanopowder. Lett. Mater. 2019, 9, 334–338. [Google Scholar] [CrossRef]
- McGinley, J. Electromagnetic Pulse Technology as a Means of Joining Generation IV Cladding Materials. In Proceedings of the Volume 1: Plant Operations, Maintenance, Engineering, Modifications and Life Cycle; Component Reliability and Materials Issues; Next Generation Systems, ASMEDC, 1 2009, ICONE17, Brussels, Belgium, 12–16 July 2009. [Google Scholar] [CrossRef]
- Lee, J.G.; Park, J.J.; Lee, M.K.; Rhee, C.K.; Kim, T.K.; Spirin, A.; Krutikov, V.; Paranin, S. End Closure Joining of Ferritic-Martensitic and Oxide-Dispersion Strengthened Steel Cladding Tubes by Magnetic Pulse Welding. Metall. Mater. Trans. A 2015, 46, 3132–3139. [Google Scholar] [CrossRef]
- Song, J.W.; Park, J.J.; Lee, G.J.; Lee, M.K.; Park, K.H.; Hong, S.J.; Lee, J.G. Effect of Impact Velocity on Interface Characteristics of HT-9 Steel Joints Fabricated by Magnetic Pulse Welding. Met. Mater. Int. 2019, 26, 360–369. [Google Scholar] [CrossRef]
- Kulkarni, M.R.; Kolge, T.; Kumar, D.; Kore, S.D.; Sharma, A.; Srikanth, V.; Laik, A.; Chakraborty, G.; Albert, S. Magnetic Pulse Welding of D9 Steel Tube to SS316LN End Plug. Trans. Indian Inst. Met. 2022, 75, 171–182. [Google Scholar] [CrossRef]
- Sharma, S.K.; JMMVS, A.; Mishra, S.; Rani, R.; Mishra, S.; Waghmare, N.; Sharma, A. Generation of 0.5 to 0.6 Mega Gauss Pulse Magnetic Field for Magnetic Pulse Welding of High Strength Alloys. In Proceedings of the 2018 16th International Conference on Megagauss Magnetic Field Generation and Related Topics (MEGAGAUSS), Kashiwa, Japan, 25–29 September 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Adamyan, Y.E.; Alekseev, D.I.; Chernenkaya, L.V.; Krivosheev, S.I.; Magazinov, S.G.; Titkov, V.V. Interaction the high-density pulse current with material in the zone of local conduction disturbance at the edge of a thin wall magnetic system. In Proceedings of the 2018 16th International Conference on Megagauss Magnetic Field Generation and Related Topics (MEGAGAUSS), Kashiwa, Japan, 25–29 September 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Shneerson, G.A.; Dolotenko, M.I.; Krivosheev, S.I. Strong and Superstrong Pulsed Magnetic Fields Generation; De Gruyter: Berlin, Germany; München, Germany; Boston, MA, USA, 2014. [Google Scholar] [CrossRef]
- Furth, H.P.; Levine, M.A.; Waniek, R.W. Production and Use of High Transient Magnetic Fields. II. Rev. Sci. Instruments 1957, 28, 949–958. [Google Scholar] [CrossRef]
- Han, K.; Toplosky, V.; Walsh, R.; Swenson, C.; Lesch, B.; Pantsyrnyi, V. Properties of high strength Cu-Nb conductor for pulsed magnet applications. IEEE Trans. Appl. Supercond. 2002, 12, 1176–1180. [Google Scholar] [CrossRef]
- Bevk, J.; Harbison, J.P.; Bell, J.L. Anomalous increase in strength of in situ formed Cu-Nb multifilamentary composites. J. Appl. Phys. 1978, 49, 6031–6038. [Google Scholar] [CrossRef]
- Shikov, A.K.; Pantsyrnyi, V.I.; Vorob’eva, A.E.; Sud’ev, S.V.; Khlebova, N.E.; Silaev, A.K.; Belyakov, N.A. Copper-Niobium High-Strength and High-Conductivity Winding Wires for Pulsed Magnets. Met. Sci. Heat Treat. 2002, 44, 491–495. [Google Scholar] [CrossRef]
- Heringhaus, F.; Raabe, D.; Gottstein, G. On the correlation of microstructure and electromagnetic properties of heavily cold worked Cu-20 wt% Nb wires. Acta Metall. Mater. 1995, 43, 1467–1476. [Google Scholar] [CrossRef]
- Reza Toroghinejad, M.; Ashrafizadeh, F.; Jamaati, R. On the use of accumulative roll bonding process to develop nanostructured aluminum alloy 5083. Mater. Sci. Eng. A 2013, 561, 145–151. [Google Scholar] [CrossRef]
- Novickij, J.; Višniakov, N. The Application of Composite Materials in Pulsed Inductor Design. Solid State Phenom. 2006, 113, 545–548. [Google Scholar] [CrossRef]
- Lagutin, A.; Rosseel, K.; Herlach, F.; Vanacken, J.; Bruynseraede, Y. Development of reliable 70 T pulsed magnets. Meas. Sci. Technol. 2003, 14, 2144. [Google Scholar] [CrossRef]
- Peng, T.; Jiang, F.; Sun, Q.Q.; Xu, Q.; Xiao, H.X.; Herlach, F.; Li, L. Design and Test of a 90-T Nondestructive Magnet at the Wuhan National High Magnetic Field Center. IEEE Trans. Appl. Supercond. 2014, 24, 4300604. [Google Scholar] [CrossRef]
- Zherlitsyn, S.; Bianchi, A.; Herrmannsdoerfer, T.; Pobell, F.; Skourski, Y.; Sytcheva, A.; Zvyagin, S.; Wosnitza, J. Coil Design for Non-Destructive Pulsed-Field Magnets Targeting 100 T. IEEE Trans. Appl. Supercond. 2006, 16, 1660–1663. [Google Scholar] [CrossRef]
- Peng, T.; Jiang, F.; Sun, Q.Q.; Pan, Y.; Herlach, F.; Li, L. Concept Design of 100-T Pulsed Magnet at the Wuhan National High Magnetic Field Center. IEEE Trans. Appl. Supercond. 2016, 26, 1–4. [Google Scholar] [CrossRef]
- Peng, T.; Liu, S.B.; Pan, Y.; Lv, Y.L.; Ding, H.F.; Han, X.T.; Xiao, H.X.; Wang, S.; Jiang, S.; Li, L. A Novel Design of Multi-Coil Pulsed Magnet System for 100 T. IEEE Trans. Appl. Supercond. 2022, 32, 1–4. [Google Scholar] [CrossRef]
- Wittman, R. The influence of collision parameters of the strength and microstructure of an explosion welded aluminium alloy. In Proceedings of the Proc. 2nd Int. Sym. on Use of an Explosive Energy in Manufacturing Metallic Materials, Marianske Lazne, Czech Republic, 9–12 October 1973. [Google Scholar]
- Deribas, A. Fizika Uprochneniya i Svarki Vzrivom; Nauka: Novosibirsk, Russia, 1980. [Google Scholar]
- Ribeiro, J.B.; Mendes, R.; Loureiro, A. Review of the weldability window concept and equations for explosive welding. J. Phys. Conf. Ser. 2014, 500, 052038. [Google Scholar] [CrossRef]
- Yan, Z.; Lin, L.; Chen, Y.; Cui, X.; Ping Ye, S.; Qiu, D.; Zhang, L. Electromagnetic flanging using a field shaper with multiple seams. Int. J. Adv. Manuf. Technol. 2022, 120, 1747–1763. [Google Scholar] [CrossRef]
- Yan, Z.; Xiao, A.; Cui, X.; Guo, Y.; Lin, Y.; Zhang, L.; Zhao, P. Magnetic pulse welding of aluminum to steel tubes using a field-shaper with multiple seams. J. Manuf. Process. 2021, 65, 214–227. [Google Scholar] [CrossRef]
- Shen, T.; Li, C.; Zhou, Y.; Wu, H.; Wang, X.; Xu, Q. The effect of assembly of coil and field shaper on electromagnetic pulse crimping. Energy Rep. 2022, 8, 1243–1248. [Google Scholar] [CrossRef]
- Rajak, A.K.; Kumar, R.; Basumatary, H.; Kore, S.D. Numerical and Experimental Study on Effect of Different Types of Field-Shaper on Electromagnetic Terminal-Wire Crimping Process. Int. J. Precis. Eng. Manuf. 2018, 19, 453–459. [Google Scholar] [CrossRef]
- Rajak, A.K.; Kumar, R.; Kore, S.D. Designing of field shaper for the electro-magnetic crimping process. J. Mech. Sci. Technol. 2019, 33, 5407–5413. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, N.; Li, X.; Deng, F.; Wang, Q.; Ding, H. A novel field shaper with slow-varying central hole for electromagnetic pulse welding of sheet metal. Int. J. Adv. Manuf. Technol. 2020, 108, 2595–2606. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, Z.; Peng, W.; Zhang, H. Experimental investigation and optimization on field shaper structure parameters in magnetic pulse welding. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2021, 235, 2108–2117. [Google Scholar] [CrossRef]
- Zaytsev, E.; Spirin, A.; Krutikov, V.; Paranin, S.; Zayats, S.; Kaigorodov, A.; Koleukh, D.; Kebets, A. Development of material based on nanostructured Cu-Nb alloy for high magnetic field coils of microsecond duration. In Proceedings of the 8th International Congress on Energy Fluxes and Radiation Effects. Crossref, 11 2022, EFRE-2022, Tomsk, Russia, 2–8 October 2022. [Google Scholar] [CrossRef]
- Krutikov, V.; Paranin, S.; Ivanov, V.; Spirin, A.; Koleukh, D.; Lee, J.G.; Lee, M.K.; Rhee, C.K. Magnetic Pulse Welding of the “Tube–Plug” Pair of STS410 Steel. In Proceedings of the 6th International Conference on High Speed Forming, Daejeon, Republic of Korea, 27–29 March 2014; pp. 207–214. [Google Scholar] [CrossRef]
- Spirin, A.V.; Krutikov, V.I.; Koleukh, D.S.; Mamaev, A.S.; Paranin, S.N.; Gavrilov, N.V.; Kaigorodov, A.S. Effect of structural steel ion plasma nitriding on material durability in pulsed high magnetic fields. J. Phys. Conf. Ser. 2017, 830, 012080. [Google Scholar] [CrossRef]
- Bellmann, J.; Schettler, S.; Dittrich, S.; Lueg-Althoff, J.; Schulze, S.; Hahn, M.; Beyer, E.; Tekkaya, A.E. Experimental study on the magnetic pulse welding process of large aluminum tubes on steel rods. IOP Conf. Ser. Mater. Sci. Eng. 2019, 480, 012033. [Google Scholar] [CrossRef]
- Psyk, V.; Risch, D.; Kinsey, B.; Tekkaya, A.; Kleiner, M. Electromagnetic forming—A review. J. Mater. Process. Technol. 2011, 211, 787–829. [Google Scholar] [CrossRef]
C | Si | Mn | Cr | Ni | Mo | Nb | V | W | Fe |
---|---|---|---|---|---|---|---|---|---|
0.15 | 0.49 | 0.55 | 11.96 | 0.18 | 0.1 | 0.01 | 0.04 | 0.02 | bal. |
, % | ||||
---|---|---|---|---|
2-slit FS | 9.55 | 4.9 | 6.7 | 27 |
4-slit FS | 9.55 | 5.2 | 5.7 | 7 |
, kV | , kA | , T | <>, mm | , mm | Rel. Diff., % | |
---|---|---|---|---|---|---|
2-slit Cu-Nb | 10.7 | 828 | 45 | 5.38 | 6.02 | 11 |
4-slit Cu-Nb | 12 | 950 | 46 | 6.46 | 6.37 | 1.4 |
1-slit Steel coil | 8.5 | 705 | 40 | 6.64 | 5.66 | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaytsev, E.; Krutikov, V.; Spirin, A.; Paranin, S. Development of Multi-Part Field-Shapers for Magnetic Pulse Welding Using Nanostructured Cu-Nb Composite. J. Manuf. Mater. Process. 2024, 8, 97. https://doi.org/10.3390/jmmp8030097
Zaytsev E, Krutikov V, Spirin A, Paranin S. Development of Multi-Part Field-Shapers for Magnetic Pulse Welding Using Nanostructured Cu-Nb Composite. Journal of Manufacturing and Materials Processing. 2024; 8(3):97. https://doi.org/10.3390/jmmp8030097
Chicago/Turabian StyleZaytsev, Evgeny, Vasiliy Krutikov, Alexey Spirin, and Sergey Paranin. 2024. "Development of Multi-Part Field-Shapers for Magnetic Pulse Welding Using Nanostructured Cu-Nb Composite" Journal of Manufacturing and Materials Processing 8, no. 3: 97. https://doi.org/10.3390/jmmp8030097
APA StyleZaytsev, E., Krutikov, V., Spirin, A., & Paranin, S. (2024). Development of Multi-Part Field-Shapers for Magnetic Pulse Welding Using Nanostructured Cu-Nb Composite. Journal of Manufacturing and Materials Processing, 8(3), 97. https://doi.org/10.3390/jmmp8030097