Effects of δ Phase and Annealing Twins on Mechanical Properties and Impact Toughness of L-PBF Inconel 718
Abstract
:1. Introduction
2. Materials and Experimental Methods
2.1. Materials
2.2. Heat Treatment
2.3. Tensile, Impact, and Hardness Testing
2.4. Characterization of Microstructure
3. Experimental Results
3.1. Microstructure and Phases
3.1.1. Microstructure
3.1.2. The Annealing Twins
3.1.3. Gran Growth
3.1.4. The δ precipitates
3.1.5. Phase Identification with X-ray Diffraction
3.1.6. Identification of δ Phase with Electron Diffraction
3.2. Hardness
3.3. Tensile Properties
3.4. Charpy Impact Toughness
3.5. Fracture Analysis
4. Discussion
4.1. Effects of δ Precipitates
4.2. Effects of Grain Boundaries and Annealing Twins
5. Conclusions and Prospects
- The nucleation of the δ phase primarily begins along the subgrain boundaries, which are enriched in Nb. However, due to the presence of partially dissolved or undissolved Laves, the Nb concentration in the matrix is below the necessary level for δ phase nucleation.
- Specimens with δ precipitates (S980) demonstrate a higher ultimate tensile strength (13%), yield strength (27%), and hardness (12%) compared to specimens with annealing twins (S1100). The δ precipitates, in addition to unreleased stress due to some retained lattice defects, are attributed to the higher mechanical strength of S980.
- In contrast, the specimens with annealing twins exhibited significantly higher impact toughness (up to four times) and ductility (twice) compared to specimens with δ precipitates. The low ductility and impact toughness of S980 may be attributed to a lattice mismatch between the δ phase and the γ phase (matrix), as the δ precipitates act as sites for void nucleation and crack propagation, negatively affecting plasticity. Twin boundaries can effectively blunt cracks, thereby resisting fracture and resulting in the improved plasticity of IN718.
- The heat treatment regime, S1100 (1100 °C/3 h + 700 °C/12 h) generally showed optimized tensile strength (1324 MPa) and ductility (26%). These values are equivalent to or better than the corresponding values obtained from the conventional and AM-IN718 processes which undergo similar post-processing steps.
- The impact toughness of 56–64 J obtained from the twin-enriched specimens is one of the highest values reported in the literature for optimized AM-based post-processed IN718.
- More systematic studies of the δ phase (varying volume fraction, distribution, and morphology) are important to elucidate the positive and/or negative effects on the mechanical properties of IN718.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Donachie, M.J.; Donachie, S.J. Superalloys: A Technical Guide; ASM International: Almere, The Netherlands, 2002. [Google Scholar]
- Qi, H.; Azer, M.; Ritter, A. Studies of standard heat treatment effects on microstructure and mechanical properties of laser net shape manufactured INCONEL 718. Metall. Mater. Trans. A 2009, 40, 2410–2422. [Google Scholar] [CrossRef]
- Sanchez, S.; Smith, P.; Xu, Z.; Gaspard, G.; Hyde, C.J.; Wits, W.W.; Ashcroft, I.A.; Chen, H.; Clare, A.T. Powder Bed Fusion of nickel-based superalloys: A review. Int. J. Mach. Tools Manuf. 2021, 165, 103729. [Google Scholar] [CrossRef]
- Schafrik, R.E.; Ward, D.D.; Groh, J.R. Application of Alloy 718 in GE Aircraft Engines: Past, Present and Next Five Years. Superalloys 2001, 718, 1–11. [Google Scholar]
- Nunes, R.M.; Pereira, D.; Clarke, T.; Hirsch, T.K. Delta phase characterization in Inconel 718 alloys through X-ray diffraction. ISIJ Int. 2015, 55, 2450–2454. [Google Scholar] [CrossRef]
- Song, H.Y. Multi-scale Microstructure Characterization for Improved Understanding of Microstructure-Property Relationship in Additive Manufacturing. Ph.D. Thesis, Graduate School of The Ohio State University: Ohio, Columbus, OH, USA, 2016. [Google Scholar]
- Radavich, J.F. The physical metallurgy of cast and wrought alloy 718. Superalloy 1989, 718, 229–240. [Google Scholar]
- Tucho, W.M.; Cuvillier, P.; Sjolyst-Kverneland, A.; Hansen, V. Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment. Mater. Sci. Eng. A 2017, 689, 220–232. [Google Scholar] [CrossRef]
- Tucho, W.M.; Hansen, V. Characterization of SLM-fabricated Inconel 718 after solid solution and precipitation hardening heat treatments. J. Mater. Sci. 2019, 54, 823–839. [Google Scholar] [CrossRef]
- Azadian, S.; Wei, L.-Y.; Warren, R. Delta phase precipitation in Inconel 718. Mater. Charact. 2004, 53, 7–16. [Google Scholar] [CrossRef]
- Wei, X.-P.; Zheng, W.-J.; Song, Z.-G.; Lei, T.; Yong, Q.-L.; Xie, Q.-C. Strain-induced precipitation behavior of δ phase in Inconel 718 alloy. J. Iron Steel Res. Int. 2014, 21, 375–381. [Google Scholar] [CrossRef]
- Sundararaman, M.; Mukhopadhyay, P.; Banerjee, S. Precipitation of the δ-Ni3Nb phase in two nickel base superalloys. Metall. Trans. A 1988, 19, 453–465. [Google Scholar] [CrossRef]
- Andrieu, E.; Wang, N.; Molins, R.; Pineau, A. Influence of Compositional Modifications on Thermal Stability of Alloy 718. Superalloys 1994, 718, 695–710. [Google Scholar]
- Dong, J.-X.; Xie, X.; Xu, Z.; Zhang, S.; Chen, M.L. Tem Study on Microstructure Behavior of Alloy 718 after Long Time Exposure at High Temperatures. Superalloys 1994, 718, 649–658. [Google Scholar]
- Kirman, I. Precipitation in the Fe-Ni-Cr-Nb system. J. Iron Steel Inst. 1969, 207, 1612–1618. [Google Scholar]
- Sundararaman, M.; Nalawade, S.; Singh, J.; Verma, A.; Paul, B.; Ramaswamy, K. Evolution of δ Phase Microstructure in Alloy 718. In Proceedings of the 7th International Symposium on Superalloy, Seven Springs, PA, USA, 9–13 September 2012; Volume 2, pp. 737–750. [Google Scholar]
- Li, J.; Zhao, Z.; Bai, P.; Qu, H.; Liu, B.; Li, L.; Wu, L.; Guan, R.; Liu, H.; Guo, Z. Microstructural evolution and mechanical properties of IN718 alloy fabricated by selective laser melting following different heat treatments. J. Alloys Compd. 2019, 772, 861–870. [Google Scholar] [CrossRef]
- Anderson, M.; Thielin, A.L.; Bridier, F.; Bocher, P.; Savoie, J. δ Phase precipitation in Inconel 718 and associated mechanical properties. Mater. Sci. Eng. A 2017, 679, 48–55. [Google Scholar] [CrossRef]
- Kuo, Y.-L.; Horikawa, S.; Kakehi, K. The effect of interdendritic δ phase on the mechanical properties of alloy 718 built up by additive manufacturing. Mater. Des. 2017, 116, 411–418. [Google Scholar] [CrossRef]
- Desvallees, Y.; Bouzidi, M.; Bois, F.; Beaude, N. Delta phase in Inconel 718: Mechanical properties and forging process requirements. Superalloys 1994, 281–291. [Google Scholar] [CrossRef]
- Liu, F.; Lin, X.; Song, M.; Zhao, W.; Chen, J.; Huang, W. Effect of intermediate heat treatment temperature on microstructure and notch sensitivity of laser solid formed Inconel 718 superalloy. J. Wuhan Univ. Technol. -Mater. Sci. Ed. 2011, 26, 908–913. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, D.; Cao, M.; Chen, R.; Feng, Z.; Poprawe, R.; Schleifenbaum, J.H.; Ziegler, S. Effect of δ phase on high temperature mechanical performances of Inconel 718 fabricated with SLM process. Mater. Sci. Eng. A 2019, 767, 138327. [Google Scholar] [CrossRef]
- Tucho, W.M.; Hansen, V. Studies of post-fabrication heat treatment of L-PBF-Inconel 718: Effects of hold time on microstructure, annealing twins, and hardness. Metals 2021, 11, 266. [Google Scholar] [CrossRef]
- Li, X.; Shi, J.J.; Cao, G.H.; Russell, A.M.; Zhou, Z.J.; Li, C.P.; Chen, G.F. Improved plasticity of Inconel 718 superalloy fabricated by selective laser melting through a novel heat treatment process. Mater. Des. 2019, 180, 107915. [Google Scholar] [CrossRef]
- Chuang, T.-H.; Tsai, C.-H.; Wang, H.-C.; Chang, C.-C.; Chuang, C.-H.; Lee, J.-D.; Tsai, H.-H. Effects of Annealing Twins on the Grain Growth and Mechanical Properties of Ag-8Au-3Pd Bonding Wires. J. Electron. Mater. 2012, 41, 3215–3222. [Google Scholar] [CrossRef]
- Li, C.; Ma, B.; Song, Y.; Li, K.; Dong, J. The annealing twins of Fe-20Mn-4Al-0.3C austenitic steels during symmetric and asymmetric hot rolling. Metals 2018, 8, 882. [Google Scholar] [CrossRef]
- ASTM F3055-14a; Standard Specification for Additive Manufacturing Nickel Alloy (UNS N07718) with Powder Bed Fusion. ASTM: West Conshohocken, PA, USA, 2014.
- DNV-ST-B203; Additive Manufacturing of Metallic Parts. DNV: Bærum, Norway, 2022.
- ISO 148-1:2016; Metallic Materials—Charpy Pendulum Impact Test. ISO: Geneva, Switzerland, 2016.
- AMS5662; Alloy, Bars, Forgings, and Rings, Corrosion and Heat Resistant Nickel Base-19Cr-3.1Mo-5.1(Cb+Ta)-0.90Ti-0.50Al Consumable Electrode or Vacuum Induction Melted, Solution Treated. SAE International: Warrendale, PA, USA, 2022.
- ASTM E8/E8M-16; Standard Test Methods for Tension Testing of Metallic Materials. ASTM: West Conshohocken, PA, USA, 2020.
- Tucho, W.M.; Bjørge, O.K.; Bista, S.; Nedreberg, M.L.; Hansen, V.F. Comparative Studies of Mechanical Properties and Microstructure of LPBF-Fabricated Virgin and Reused 316L Stainless Steel. In Analytical and Experimental Methods in Mechanical and Civil Engineering; Springer Nature: Cham, Switzerland, 2024. [Google Scholar]
- ASTM E8/E8M–13A; Standard Test Methods for Tension Testing of Metallic Materials. ASTM: West Conshohocken, PA, USA, 2013.
- ASTM E384–22; Standard Test Method for microindentation Hardness of Materials. ASTM: West Conshohocken, PA, USA, 2022.
- Zhang, S.; Wang, L.; Lin, X.; Yang, H.; Huang, W. The formation and dissolution mechanisms of Laves phase in Inconel 718 fabricated by selective laser melting compared to directed energy deposition and cast. Compos. Part B Eng. 2022, 239, 109994. [Google Scholar] [CrossRef]
- Nikolic, D.N.; Maksimovic, M.V.; Branković, G.; Živković, M.P.; Pavlovic, G.M. Correlation between crystal orientation and morphology of electrolytically produced powder particles: Analysis of the limiting cases. Zast. Mater. 2018, 59, 256–264. [Google Scholar] [CrossRef]
- Paulonis, D.F.; Oblak, J.M.; Duvall, D.S. Pricipitation in Nickel-Base Alooy 718; Defense Technical Information Center: Fort Belvoir, VI, USA, 1969. [Google Scholar]
- Hong, S.J.; Chen, W.P.; Wang, T.W. A diffraction study of the γ″ phase in Inconel 718 superalloy. Metall. Mater. Trans. A 2001, 32, 1887–1901. [Google Scholar] [CrossRef]
- Yadroitsev, I.; Thivillon, L.; Bertrand, P.; Smurov, I. Strategy of manufacturing components with designed internal structure by selective laser melting of metallic powder. Appl. Surf. Sci. 2007, 254, 980–983. [Google Scholar] [CrossRef]
- Mertens, A.; Reginster, S.; Hakan, P.; Contrepois, Q.; Dormal, T.; Lemaire, O.; Lecomte-Beckers, J. Mechanical properties of alloy Ti-6Al-4V and of stainless steel 316L processed by Selective Laser Melting: Influence of out-of-equilibrium microstructures. Powder Metall. 2014, 57, 184–189. [Google Scholar] [CrossRef]
- Röttger, A.; Boes, J.; Theisen, W.; Thiele, M.; Esen, C.; Edelmann, A.; Hellmann, R. Microstructure and mechanical properties of 316L austenitic stainless steel processed by different SLM devices. Int. J. Adv. Manuf. Technol. 2020, 108, 769–783. [Google Scholar] [CrossRef]
- Neikter, M.; Raja, D.C.; Balachandramurthi, A.R.; Harlin, P. Tailored ductility and strength for enhanced impact toughness of laser powder fusion built Alloy 718. J. Alloys Compd. 2021, 884, 161374. [Google Scholar] [CrossRef]
- Zhu, Q.; Chen, G.; Wang, C.; Cheng, L.; Qin, H.; Zhang, P. Effect of the δ Phase on the Tensile Properties of a Nickel-Based Superalloy. Metals 2019, 9, 1153. [Google Scholar] [CrossRef]
- Yu, X.; Lin, X.; Liu, F.; Wang, L.; Tang, Y.; Li, J.; Zhang, S.; Huang, W. Influence of post-heat-treatment on the microstructure and fracture toughness properties of Inconel 718 fabricated with laser directed energy deposition additive manufacturing. Mater. Sci. Eng. A 2020, 798, 140092. [Google Scholar] [CrossRef]
- Li, P.; Zhou, J.; Gong, Y.; Meng, X.; Lu, J. Effect of post-heat treatment on the microstructure and mechanical properties of laser metal deposition Inconel 718. J. Mech. Sci. Technol. 2021, 35, 2871–2878. [Google Scholar] [CrossRef]
- Sreekanth, S.; Hurtig, K.; Joshi, S.; Andersson, J. Effect of process parameters and heat treatments on delta-phase precipitation in directed energy deposited alloy 718. Weld. World 2022, 66, 863–877. [Google Scholar] [CrossRef]
- Hansen, N. Hall–Petch relation and boundary strengthening. Scr. Mater. 2004, 51, 801–806. [Google Scholar] [CrossRef]
- Schneider, M.; George, E.P.; Manescau, T.J.; Záležák, T.; Hunfeld, J.; Dlouhý, A.; Eggeler, G.; Laplanche, G. Analysis of strengthening due to grain boundaries and annealing twin boundaries in the CrCoNi medium-entropy alloy. Int. J. Plast. 2020, 124, 155–169. [Google Scholar] [CrossRef]
- Liu, G.S.; House, S.; Kacher, J.; Tanaka, M.; Higashida, K.; Robertson, I. Electron tomography of dislocation structures. Mater. Charact. 2014, 87, 1–11. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, X. Twinning effects on strength and plasticity of metallic materials. Mrs Bull. 2016, 41, 274–281. [Google Scholar] [CrossRef]
- Lim, L.C.; Raj, R. Interaction between lattice and grain boundary dislocations and their role in mechanical properties of interfaces. J. Phys. Colloq. 1985, 46, C4-581–C4-595. [Google Scholar] [CrossRef]
- Neogi, A.; Janisch, R. Twin-boundary assisted crack tip plasticity and toughening in lamellar γ-TiAl. Acta Mater. 2021, 213, 116924. [Google Scholar] [CrossRef]
- Liu, L.; Wang, J.; Gong, S.K.; Mao, S.X. Atomistic observation of a crack tip approaching coherent twin boundaries. Sci. Rep. 2014, 4, 4397. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-W.; Li, X.; Gao, H.; Kumar, S. In situ observations of crack arrest and bridging by nanoscale twins in copper thin films. Acta Mater. 2012, 60, 2959–2972. [Google Scholar] [CrossRef]
Elements | Ni | Fe | Cr | Nb | Mo | Ti | Al | Co | Si | Mn | Cu |
---|---|---|---|---|---|---|---|---|---|---|---|
Wt.% | 50–55 | 11–22.4 | 17–21 | 4.8–5.5 | 2.8–3.3 | 0.7–1.2 | 0.2–0.8 | 1.0 | 0.4 | 0.4 | 0.3 |
Site → Element ↓ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
Nb | 11.35 | 12.26 | 13.99 | 8.17 | 6.86 | 7.31 | 8.21 | 3.46 | 3.52 |
Mo | 2.09 | 2.15 | 1.91 | 2.24 | 2.31 | 2.56 | 2.16 | 2.52 | 2.5 |
Ti | 2.0 | 1.85 | 2.34 | 1.62 | 1.5 | 1.6 | 1.71 | 1.2 | 1.29 |
Cr | 14.02 | 13.47 | 10.86 | 16.92 | 18.27 | 18.31 | 17.02 | 21.37 | 21.27 |
Fe | 12.43 | 12.48 | 9.98 | 15.07 | 16.26 | 16.05 | 15.21 | 19.11 | 19.08 |
Ni | 57.76 | 57.31 | 60.67 | 55.62 | 54.37 | 53.7 | 55.32 | 51.86 | 51.89 |
S980 | S1100 | |||||
---|---|---|---|---|---|---|
hkl | R (hkl) | TC (hkl) | RTC (hkl) | R (hkl) | TC (hkl) | RTC (hkl) |
111 | 62.8 | 1.16 | 31.57 | 20.4 | 0.37 | 8.16 |
200 | 17.4 | 0.76 | 20.6 | 62.9 | 2.73 | 59.58 |
220 | 11 | 0.96 | 26.0 | 10.9 | 0.95 | 20.72 |
311 | 8.8 | 0.8 | 21.83 | 5.8 | 0.53 | 11.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tucho, W.M.; Ohm, B.A.; Canizalez, S.A.P.; Egeland, A.; Mildt, M.B.; Nedreberg, M.L.; Hansen, V.F. Effects of δ Phase and Annealing Twins on Mechanical Properties and Impact Toughness of L-PBF Inconel 718. J. Manuf. Mater. Process. 2024, 8, 135. https://doi.org/10.3390/jmmp8040135
Tucho WM, Ohm BA, Canizalez SAP, Egeland A, Mildt MB, Nedreberg ML, Hansen VF. Effects of δ Phase and Annealing Twins on Mechanical Properties and Impact Toughness of L-PBF Inconel 718. Journal of Manufacturing and Materials Processing. 2024; 8(4):135. https://doi.org/10.3390/jmmp8040135
Chicago/Turabian StyleTucho, Wakshum Mekonnen, Bjorn Andre Ohm, Sebastian Andres Pedraza Canizalez, Andreas Egeland, Martin Bernard Mildt, Mette Lokna Nedreberg, and Vidar Folke Hansen. 2024. "Effects of δ Phase and Annealing Twins on Mechanical Properties and Impact Toughness of L-PBF Inconel 718" Journal of Manufacturing and Materials Processing 8, no. 4: 135. https://doi.org/10.3390/jmmp8040135
APA StyleTucho, W. M., Ohm, B. A., Canizalez, S. A. P., Egeland, A., Mildt, M. B., Nedreberg, M. L., & Hansen, V. F. (2024). Effects of δ Phase and Annealing Twins on Mechanical Properties and Impact Toughness of L-PBF Inconel 718. Journal of Manufacturing and Materials Processing, 8(4), 135. https://doi.org/10.3390/jmmp8040135