An In-Depth Exploration of Numerical Simulations for Stress Fields in Multi-Directional Rolling Processes
Abstract
:1. Introduction
- (1)
- Multi-directional rolling study: Previous research on the combination of additive manufacturing and rolling has been limited to unilateral rolling. This study is the first to simulate both longitudinal and transverse rolling, thereby filling a gap in this field.
- (2)
- Stress field analysis: This paper provides a detailed comparison between numerical simulations and measured residual stresses, offering a theoretical basis and reference for the formation of specific parts in future additive manufacturing processes, which has significant practical value.
- (3)
- Combination of simulation and measurement: By integrating simulation and measured data, the research results become more objective and realistic, enhancing this study’s credibility and scientific validity, thereby demonstrating methodological innovation.
2. Materials and Methods
2.1. Finite Element Model of Multi-Directional Rolling Forming
2.2. Heat Source Settings
2.3. Boundary Condition Setting
2.4. Material Model
3. Stress Field Analysis
3.1. Analysis of the Stress Field Results in Free Deposition
3.2. Analysis of the Stress Field Results of the Forward Lateral Rolling Force
3.3. Validity Verification
4. Conclusions
- (1)
- Residual Stress Distribution After Arc Additive Manufacturing
- (2)
- Impact of Multi-directional Rolling on Residual Stress
- (3)
- Impact of Rolling on Equivalent Plastic Strain
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gibson, I.; Rosen, D.; Stucker, W.B.; Khorasani, M.; Rosen, D.; Stucker, B. Additive Manufacturing Technologies; Springer: Berlin, Germany, 2021. [Google Scholar]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Behera, M.P.; Dougherty, T.; Singamneni, S.; Silva, K.D. Selective laser melting of aluminium metal-matrix composites and the challenges. Mater. Today Proc. 2020, 33, 5729–5733. [Google Scholar] [CrossRef]
- Seely, D.; Bagheri, M.A.; Dickel, D.; Cho, H.E.; Rhee, H.; Horstemeyer, M.F. The Chemistry–Process–Structure Relationships of a Functionally Graded Ti-6Al-4V/Ti-1B Alloy Processed with Laser-Engineered Net Shaping Creates Borlite. Materials 2024, 17, 3491. [Google Scholar] [CrossRef]
- Heinl, P.; Müller, L.; Körner, C.; Singer, R.F.; Müller, F.A. Cellular Ti–6Al–4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater. 2008, 4, 1536–1544. [Google Scholar] [CrossRef]
- Dave, V.R.; Matz, J.E.; Eagar, T.W. Electron beam solid freeform fabrication of metal parts. Solid Freeform Fabr. Symp. 1995, 64–71. [Google Scholar]
- Dickens, P.M.; Pridham, M.S.; Cobb, R.C.; Gibson, I.; Dixon, G. Rapid Prototyping Using 3-D Welding. In Proceedings of the 1992 International Solid Freeform Fabrication Symposium, Austin, TX, USA, 3–5 August 1992. [Google Scholar]
- Liu, J.; Xu, Y.; Ge, Y.; Hou, Z.; Chen, S. Wire and Arc Additive Manufacturing of Metal Components: A Review of Recent Research Developments. Int. J. Adv. Manuf. Technol. 2020, 111, 149–198. [Google Scholar] [CrossRef]
- Li, J.; Alkahari, M.; Rosli, N.; Hasan, R.; Ramli, F. Review of Wire Arc Additive Manufacturing for 3D Metal Printing. Int. J. Autom. Technol. 2019, 13, 346–353. [Google Scholar] [CrossRef]
- Chernovol, N.; Sharma, A.; Tjahjowidodo, T.; Lauwers, B.; Van Rymenant, P. Machinability of Wire and Arc Additive Manufactured Components. CIRP J. Manuf. Sci. Technol. 2021, 35, 379–389. [Google Scholar] [CrossRef]
- Lopes, J.G.; Machado, C.M.; Duarte, V.R.; Rodrigues, T.A.; Santos, T.G.; Oliveira, J.P. Effect of Milling Parameters on HSLA Steel Parts Produced by Wire and Arc Additive Manufacturing (WAAM). J. Manuf. Process. 2020, 59, 739–749. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, R.; Liang, L.; Wang, G. HDMR Technology for the Aircraft Metal Part. Rapid Prototyp. J. 2016, 22, 857–863. [Google Scholar]
- Colegrove, P.A.; Martina, F.; Williams, S.W.; Meyer, J. Microstructure of Interpass Rolled Wire plus Arc Additive Manufacturing Ti-6Al-4V Components. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2015, 46A, 6103–6118. [Google Scholar]
- Hirtler, M.; Jedynak, A.; Sydow, B.; Sviridov, A.; Bambach, M. A Study on The Mechanical Properties of Hybrid Parts Manufactured by Forging and Wire Arc Additive Manufacturing. Procedia Manuf. 2020, 47, 1141–1148. [Google Scholar] [CrossRef]
- Bambach, M.; Sizova, I.; Sydow, B.; Hemes, S.; Meiners, F. Hybrid Manufacturing of Components from Ti-6Al-4V by Metal Forming and Wire-Arc Additive Manufacturing. J. Mater. Process. Technol. 2020, 282, 116689. [Google Scholar] [CrossRef]
- Chao, C.; Lin, S.; Fan, C.; Yang, C.; Zhou, L. Feasibility Analysis of Pulsed Ultrasonic for Controlling the GMAW Process and Weld Appearance. Int. J. Adv. Manuf. Technol. 2018, 97, 3619–3624. [Google Scholar]
- Kalentics, N.; Boillat, E.; Peyre, P.; Gorny, C.; Kenel, C.; Leinenbach, C.; Jhabvala, J.; Logé, R.E. 3D Laser Shock Peening -A New Method for the 3D Control of Residual Stresses in Selective Laser Melting. Mater. Des. 2017, 130, 350–356. [Google Scholar] [CrossRef]
- Bai, X.; Zhang, H.; Wang, G. Finite Element Analysis of Electromagnetic Force in GMAW Melt Pool Induced by External Magnetic Field. Trans. China Welding Inst. 2016, 37, 46–50+131. [Google Scholar]
- Wang, K.; Zhao, X.; Zhang, K. Experimental research on arc additive Manufacturing based on electromagnetic induction Heating. J. Huazhong Univ. Sci. Technol. (Nat. Sci. Ed.) 2022, 50, 58–63. [Google Scholar]
- Zhao, X.; Wang, Y.; Wang, G.; Li, R.; Zhang, H. Effect of process parameters on stress and strain of hybrid deposition and micro-rolling. Rapid Prototyp. J. 2022, 28, 490–504. [Google Scholar] [CrossRef]
- Hertel, M.; Rose, S.; Füssel, U. Numerical simulation of arc and droplet transfer in pulsed GMAW of mild steel in argon. Weld. World 2016, 60, 1055–1061. [Google Scholar] [CrossRef]
Grade | C | S | Mn | Si | P | Cr | Ni | Mo | V | Al | Ti + Zr | Cu |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Q235 | ≤1.8 | ≤3.0 | 3.5~6.5 | ≤0.4 | ≤0.4 | --- | --- | --- | --- | --- | --- | --- |
ER50-6 | 0.80 | 0.13 | 15.5 | 9.0 | 0.18 | 0.34 | 0.15 | 0.02 | 0.01 | 0.05 | 0.06 | 1.34 |
Process Parameter | Numerical Value | Process Parameter | Numerical Value |
---|---|---|---|
Welding voltage (V) | 22.8 | Arc length (mm) | 15 |
Welding current (A) | 197 | Wire diameter (mm) | 1.2 |
Welding mode | Pulse | Duration of arcing (s) | 0.6 |
Shielding gas | 98%Ar + 2%CO2 | Shutdown duration (s) | 0.6 |
Air flow (L/min) | 23 ± 1 | Protection gas pre-flow time (s) | 0.8 |
Wire feed speed (m/min) | 6.5 | Arcing current (A) | 128 |
Welding speed (mm/min) | 400 | --- | --- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Zhang, M.; Xu, C. An In-Depth Exploration of Numerical Simulations for Stress Fields in Multi-Directional Rolling Processes. J. Manuf. Mater. Process. 2024, 8, 229. https://doi.org/10.3390/jmmp8050229
Sun L, Zhang M, Xu C. An In-Depth Exploration of Numerical Simulations for Stress Fields in Multi-Directional Rolling Processes. Journal of Manufacturing and Materials Processing. 2024; 8(5):229. https://doi.org/10.3390/jmmp8050229
Chicago/Turabian StyleSun, Lele, Mingbo Zhang, and Changxu Xu. 2024. "An In-Depth Exploration of Numerical Simulations for Stress Fields in Multi-Directional Rolling Processes" Journal of Manufacturing and Materials Processing 8, no. 5: 229. https://doi.org/10.3390/jmmp8050229
APA StyleSun, L., Zhang, M., & Xu, C. (2024). An In-Depth Exploration of Numerical Simulations for Stress Fields in Multi-Directional Rolling Processes. Journal of Manufacturing and Materials Processing, 8(5), 229. https://doi.org/10.3390/jmmp8050229