Erosion Wear Behavior of HVAF-Sprayed WC/Cr3C2-Based Cermet and Martensitic Stainless Steel Coatings on AlSi7Mg0.3 Alloy: A Comparative Study
Abstract
:1. Introduction
- A graded transition zone formed between the WC-CoCr coating and the aluminum substrate due to cermet particle penetration, dramatically enhancing wear resistance compared with hard anodized film.
- Thicker WC-CoCr cermet coatings exhibited reduced wear due to a decrease in surface-layer peeling.
- Cyclic impact testing resulted in localized transverse cracks within the coating, negatively affecting performance but occurring less frequently than in WC-CoCr cermets deposited on a less ductile steel base.
2. Materials and Methods
2.1. Feedstock Powders
2.2. HVAF-Spraying-Process Parameters
2.3. Erosion Wear Tests
2.4. Volumetric Wear Calculation
2.5. Optical and Scanning Electron Microscopy
2.6. Microhardness and Porosity Characterization
2.7. X-ray Diffraction Analysis
3. Results and Discussion
3.1. Microstructural and Microhardness Characterization
3.2. Phase Composition
3.3. Wear-Resistance Highlights
3.4. Thickness-Dependent Wear Resistance of the WC-10Co4Cr Coatings
4. Conclusions
- The impact of molten particles during HVAF spraying altered the Al substrate’s near-surface layer (20–40 µm), resulting in a modified Al-Si eutectic with enhanced microhardness and strength. This modification was attributed to spheroidization and a five-fold decrease in eutectic crystal size. Deeper layers remained structurally unchanged.
- The WC-10Co4Cr and Cr3C2-25NiCr coatings exhibited a 20% increase in microhardness within 100 µm of the Al substrate. This increase was due to the high ductility and high thermal conductivity of the Al substrate, which absorbed impact energy and slowed carbide dissolution inside its metal matrix.
- Additionally, WC-10Co4Cr particles near the substrate show less splashing and deviation from their spherical shape, indicating a less disruptive deposition process due to the Al substrate’s performance.
- The SS coating’s greater thickness and uniform microhardness distribution were attributed to its complete melting during the HVAF-spraying deposition process.
- The WC-10Co4Cr coating displayed significantly higher microhardness than both Cr3C2-25NiCr and SS coatings, with values of ~12 GPa, ~9 GPa, and ~5.7 GPa, respectively.
- At high abrasive intensity, the WC-10Co4Cr coating exhibited 2–17 times greater wear resistance than Cr3C2-25NiCr, SS, and AlSi7Mg0.3 substrate materials.
- The wear resistance of the WC-10Co4Cr coating also increased when exposed to harder abrasives. Conversely, the alternative coatings showed an increase in wear resistance as abrasive impact intensity decreased.
- The relative wear resistance of the WC-10Co4Cr coatings demonstrated a qualitative decrease when the coating thickness decreased below 100 μm, attributed to brittle fracture propagation along cracks at the coating–substrate interface.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ashby, M.F.; Bréchet, Y.J.M.; Cebon, D.; Salvo, L. Selection strategies for materials and processes. Mater. Des. 2004, 25, 51–67. [Google Scholar] [CrossRef]
- Wang, H.; Liu, K.; Li, J.; Yu, W.; Wu, H.; Okulov, A. Research Progress on Solidification Cracking of Aluminum Alloy During Welding and Crack Resistance of Filler Materials. Chin. J. Mech. Eng. 2024, 60, 207–219. [Google Scholar]
- Zhang, W.; Xu, J. Advanced lightweight materials for Automobiles: A review. Mater. Des. 2022, 221, 110994. [Google Scholar] [CrossRef]
- Li, S.-S.; Yue, X.; Li, Q.-Y.; Peng, H.; Dong, B.; Liu, T.; Yang, H.; Fan, J.; Shu, S.; Qiu, F.; et al. Development and applications of aluminum alloys for aerospace industry. J. Mater. Res. Technol. 2023, 27, 944–983. [Google Scholar] [CrossRef]
- Zhu, Z.; Hu, Z.; Seet, H.L.; Liu, T.; Liao, W.; Ramamurty, U.; Nai, S.M.L. Recent progress on the additive manufacturing of aluminum alloys and aluminum matrix composites: Microstructure, properties, and applications. Int. J. Mach. Tools Manuf. 2023, 190, 104047. [Google Scholar] [CrossRef]
- Wielage, B.; Wank, A.; Pokhmurska, H.; Grund, T.; Rupprecht, C.; Reisel, G.; Friesen, E. Development and trends in HVOF spraying technology. Surf. Coat. Technol. 2006, 201, 2032–2037. [Google Scholar] [CrossRef]
- Wallerstein, D.; Salminen, A.; Lusquiños, F.; Comesaña, R.; García, J.d.V.; Rodríguez, A.R.; Badaoui, A.; Pou, J. Recent Developments in Laser Welding of Aluminum Alloys to Steel. Metals 2021, 11, 622. [Google Scholar] [CrossRef]
- Yang, J.; Oliveira, J.P.; Li, Y.; Tan, C.; Gao, C.; Zhao, Y.; Yu, Z. Laser techniques for dissimilar joining of aluminum alloys to steels: A critical review. J. Mater. Process. Technol. 2022, 301, 117443. [Google Scholar] [CrossRef]
- Maniam, K.K.; Paul, S. A Review on the Electrodeposition of Aluminum and Aluminum Alloys in Ionic Liquids. Coatings 2021, 11, 80. [Google Scholar] [CrossRef]
- Rahimi, A.; Sarraf, S.; Soltanieh, M. Nickel electroplating of 6061-T6 aluminum alloy using anodizing process as the pretreatment. J. Mater. Res. Technol. 2023, 27, 5701–5708. [Google Scholar] [CrossRef]
- Araujo, J.V.d.S.; Milagre, M.; Costa, I. A historical, statistical and electrochemical approach on the effect of microstructure in the anodizing of Al alloys: A review. Crit. Rev. Solid State Mater. Sci. 2024, 49, 521–581. [Google Scholar] [CrossRef]
- Zhao, P.; Shi, Z.; Wang, X.; Li, Y.; Cao, Z.; Zhao, M.; Liang, J. A Review of the Laser Cladding of Metal-Based Alloys, Ceramic-Reinforced Composites, Amorphous Alloys, and High-Entropy Alloys on Aluminum Alloys. Lubricants 2023, 11, 482. [Google Scholar] [CrossRef]
- Gokhfeld, N.V.; Okulov, A.V.; Filippov, M.A.; Estemirova, S.K.; Korobov, Y.S.; Morozov, S.O. The Comparative Analysis of the Fe–Cr–C–Ti–Al Coatings Synthesized by Laser, Arc and Hybrid Cladding Methods. Phys. Solid State 2022, 64, 356–361. [Google Scholar] [CrossRef]
- Okulov, A.; Korobov, Y.; Stepchenkov, A.; Makarov, A.; Iusupova, O.; Korkh, Y.; Kuznetsova, T.; Kharanzhevskiy, E.; Liu, K. Mechanical and Structural Characterization of Laser-Cladded Medium-Entropy FeNiCr-B4C Coatings. Materials 2023, 16, 5479. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, J.; Liu, K.; Xu, G.; Zhu, H.; Wang, J.; Xu, C.; Wang, L.; Okulov, A. Microstructural evolution and corrosion resistance property of in-situ Zr–C(B, Si)/Ni–Zr reinforced composite coatings on zirconium alloy by laser cladding. J. Mater. Res. Technol. 2023, 26, 530–541. [Google Scholar] [CrossRef]
- Okulov, A.; Iusupova, O.; Liu, K.; Li, J.; Stepchenkov, A.; Zavalishin, V.; Korkh, Y.; Kuznetsova, T.; Mugada, K.K.; Moganraj, A. Micromechanical and Tribological Performance of Laser-Cladded Equiatomic FeNiCr Coatings Reinforced with TiC and NbC Particles. Materials 2024, 17, 4686. [Google Scholar] [CrossRef]
- Łatka, L.; Pawłowski, L.; Winnicki, M.; Sokołowski, P.; Małachowska, A.; Kozerski, S. Review of Functionally Graded Thermal Sprayed Coatings. Appl. Sci. 2020, 10, 5153. [Google Scholar] [CrossRef]
- Qadir, D.; Sharif, R.; Nasir, R.; Awad, A.; Mannan, H.A. A review on coatings through thermal spraying. Chem. Pap. 2024, 78, 71–91. [Google Scholar] [CrossRef]
- Paz Martínez-Viademonte, M.; Abrahami, S.T.; Hack, T.; Burchardt, M.; Terryn, H. A Review on Anodizing of Aerospace Aluminum Alloys for Corrosion Protection. Coatings 2020, 10, 1106. [Google Scholar] [CrossRef]
- Sheasby, P.G.; Pinner, R. The Surface Treatment and Finishing of Aluminium and Its Alloys, 6th ed.; ASM International: Materials Park, OH, USA, 2001. [Google Scholar]
- Tsangaraki-Kaplanoglou, I.; Theohari, S.; Dimogerontakis, T.; Wang, Y.-M.; Kuo, H.-H.; Kia, S. Effect of alloy types on the anodizing process of aluminum. Surf. Coat. Technol. 2006, 200, 2634–2641. [Google Scholar] [CrossRef]
- Yerokhin, A.L.; Nie, X.; Leyland, A.; Matthews, A.; Dowey, S.J. Plasma electrolysis for surface engineering. Surf. Coat. Technol. 1999, 122, 73–93. [Google Scholar] [CrossRef]
- Zhang, J.; Dai, W.; Wang, X.; Wang, Y.; Yue, H.; Li, Q.; Yang, X.; Guo, C.; Li, C. Micro-arc oxidation of Al alloys: Mechanism, microstructure, surface properties, and fatigue damage behavior. J. Mater. Res. Technol. 2023, 23, 4307–4333. [Google Scholar] [CrossRef]
- Ravi, N.; Bukhovets, V.L.; Varshavskaya, I.G.; Sundararajan, G. Deposition of diamond-like carbon films on aluminum substrates by RF-PECVD technique: Influence of process parameters. Diam. Relat. Mater. 2007, 16, 90–97. [Google Scholar] [CrossRef]
- Gibbons, G.J.; Hansell, R.G. Down-selection and optimization of thermal-sprayed coatings for aluminum mould tool protection and upgrade. J. Therm. Spray Technol. 2006, 15, 340–347. [Google Scholar] [CrossRef]
- Picas, J.A.; Forn, A.; Rilla, R.; Martίn, E. HVOF thermal sprayed coatings on aluminium alloys and aluminium matrix composites. Surf. Coat. Technol. 2005, 200, 1178–1181. [Google Scholar] [CrossRef]
- Kavorkijan, V. Engineering wear-resistant surfaces in automotive aluminum. JOM 2003, 55, 32–34. [Google Scholar] [CrossRef]
- Sathish, M.; Radhika, N.; Saleh, B. Duplex and Composite Coatings: A Thematic Review on Thermal Spray Techniques and Applications. Met. Mater. Int. 2023, 29, 1229–1297. [Google Scholar] [CrossRef]
- Bolelli, G.; Lusvarghi, L.; Barletta, M. HVOF-sprayed WC-CoCr coatings on Al alloy: Effect of the coating thickness on the tribological properties. Wear 2009, 267, 944–953. [Google Scholar] [CrossRef]
- Pushkarev, I.I.; Dudarev, V.V.; Golemgrain, V.V.; Muravlev, O.P. Fire resistance of the subway main ventilation fan. Bull. Tomsk Polytech. Univ. 2011, 319, 111–116. (In Russian) [Google Scholar]
- Kleis, I.; Kulu, P. Solid Particle Erosion: Occurrence, Prediction and Control; Springer: London, UK, 2008. [Google Scholar]
- Yildiran, Y.; Avcu, E.; Şahin, A.E.; Fidan, S.; Yetiştiren, H.; Sinmazcelik, T. Effect of Particle Impact Angle, Erodent Particle Size and Acceleration Pressure on the Solid Particle Erosion Behavior of 3003 Aluminum Alloy. Acta Phys. Pol. 2014, 125, 523–525. [Google Scholar] [CrossRef]
- Huttunen-Saarivirta, E.; Antonov, M.; Veinthal, R.; Tuiremo, J.; Mäkelä, K.; Siitonen, P. Influence of particle impact conditions and temperature on erosion–oxidation of steels at elevated temperatures. Wear 2011, 272, 159–175. [Google Scholar] [CrossRef]
- Sugiyama, K.; Nakahama, S.; Hattori, S.; Nakano, K. Slurry wear and cavitation erosion of thermal-sprayed cermets. Wear 2005, 258, 768–775. [Google Scholar] [CrossRef]
- Zhang, X.; Li, F.; Li, Y.; Lu, Q.; Li, Z.; Lu, H.; Ran, X.; Qi, X. Comparison on multi-angle erosion behavior and mechanism of Cr3C2-25NiCr coatings sprayed by SPS and HVOF. Surf. Coat. Technol. 2020, 403, 126366. [Google Scholar] [CrossRef]
- Matikainen, V.; Rubio Peregrina, S.; Ojala, N.; Koivuluoto, H.; Schubert, J.; Houdková, Š.; Vuoristo, P. Erosion wear performance of WC-10Co4Cr and Cr3C2-25NiCr coatings sprayed with high-velocity thermal spray processes. Surf. Coat. Technol. 2019, 370, 196–212. [Google Scholar] [CrossRef]
- Bolelli, G.; Berger, L.-M.; Börner, T.; Koivuluoto, H.; Lusvarghi, L.; Lyphout, C.; Markocsan, N.; Matikainen, V.; Nylén, P.; Sassatelli, P.; et al. Tribology of HVOF- and HVAF-sprayed WC-10Co4Cr hardmetal coatings: A comparative assessment. Surf. Coat. Technol. 2015, 265, 125–144. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, W.; Ma, Y.; Meng, S.; Liu, C.; Long, L.; Tang, S. A comparative study on wear and corrosion behavior of HVOF- and HVAF-sprayed WC-10Co-4Cr coatings. Surf. Eng. 2017, 33, 63–71. [Google Scholar] [CrossRef]
- Peat, T.; Galloway, A.; Toumpis, A.; Harvey, D.; Yang, W.-H. Performance evaluation of HVOF deposited cermet coatings under dry and slurry erosion. Surf. Coat. Technol. 2016, 300, 118–127. [Google Scholar] [CrossRef]
- Maekai, I.A.; Harmain, G.A.; Zehab-ud-Din; Masoodi, J.H. Resistance to slurry erosion by WC-10Co-4Cr and Cr3C2-25(Ni20Cr) coatings deposited by HVOF stainless steel F6NM. Int. J. Refract. Met. Hard Mater. 2022, 105, 105830. [Google Scholar] [CrossRef]
- GOST 23.201-78; Products Wear Resistance Assurance: Gas Abrasive Wear Testing of Materials and Coatings with Centrifugal Accelerator. Publishing House of Standards: Moscow, Russia, 1987. (In Russian)
- Antonov, M.; Pirso, J.; Vallikivi, A.; Goljandin, D.; Hussainova, I. The effect of fine erodent retained on the surface during erosion of metals, ceramics, plastic, rubber and and hardmetal. Wear 2016, 354–355, 53–68. [Google Scholar] [CrossRef]
- Nguyen, V.B.; Nguyen, Q.B.; Lim, C.Y.H.; Zhang, Y.W.; Khoo, B.C. Effect of air-borne particle–particle interaction on materials erosion. Wear 2015, 322–323, 17–31. [Google Scholar] [CrossRef]
- Blondeau, R. Metallurgy and Mechanics of Welding: Processes and Industrial Applications; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2008. [Google Scholar]
- Liu, J.; Chen, T.; Yuan, C.; Bai, X. Performance Analysis of Cavitation Erosion Resistance and Corrosion Behavior of HVOF-Sprayed WC-10Co-4Cr, WC-12Co, and Cr3C2-25NiCr Coatings. J. Therm. Spray Technol. 2020, 29, 798–810. [Google Scholar] [CrossRef]
Powder | Fraction, μm | Chemical Composition, wt. % | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
C | Co | Cr | Fe | Mn | Ni | Si | Mo | W | ||
WC-10Co4Cr | −30 + 10 | 5.28 | 10.13 | 3.99 | 0.05 | - | 0.12 | - | - | Bal. |
Cr3C2-25NiCr | −25 + 10 | 8.6 | - | 69.2 | ≤0.10 | - | 19 | - | - | - |
SS | −45 + 16 | 1.78 | - | 27.5 | Bal. | 0.76 | 16.6 | 1.4 | 4.5 | - |
Parameters | Value | |
---|---|---|
Spraying distance, mm | 180 | |
Gas pressure, MPa | Air | 0.61 |
Base fuel (propane 1) | 0.58 | |
Secondary fuel (propane 2) | 0.45 | |
Carrier gas flow rate (nitrogen), L/min | 68 | |
Powder feed rate, g/min | 200 | |
Spray gun movement speed, m/s | 1.0 | |
Coating thickness per pass, μm | 40 |
Coatings | WC-10Co4Cr | Cr3C2-25NiCr | SS | ||
---|---|---|---|---|---|
1 | 2 | 3 | |||
Thickness, μm | 50 ± 20 | 100 ± 20 | 200 ± 30 | 200 ± 30 | 320 ± 30 |
Phase | ICDD Database Number | Wt. % |
---|---|---|
WC-10Co4Cr | ||
WC | 01-089-2727 | 92.1 |
C (graphite) | 01-071-3739 | 2.3 |
W (α-phase) | 01-071-4646 | 2.1 |
Co13.34Cr17.67 | 01-080-8334 | 3.5 |
Cr3C2-25NiCr | ||
Cr3C2 | 01-074-7137 | 49.5 |
C (graphite) | 01-075-2078 | 12.7 |
Cr | 01-077-7591 | 23.1 |
CrNi | 01-071-7594 | 14.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korobov, Y.; Antonov, M.; Astafiev, V.; Brodova, I.; Kutaev, V.; Estemirova, S.; Devyatyarov, M.; Okulov, A. Erosion Wear Behavior of HVAF-Sprayed WC/Cr3C2-Based Cermet and Martensitic Stainless Steel Coatings on AlSi7Mg0.3 Alloy: A Comparative Study. J. Manuf. Mater. Process. 2024, 8, 231. https://doi.org/10.3390/jmmp8050231
Korobov Y, Antonov M, Astafiev V, Brodova I, Kutaev V, Estemirova S, Devyatyarov M, Okulov A. Erosion Wear Behavior of HVAF-Sprayed WC/Cr3C2-Based Cermet and Martensitic Stainless Steel Coatings on AlSi7Mg0.3 Alloy: A Comparative Study. Journal of Manufacturing and Materials Processing. 2024; 8(5):231. https://doi.org/10.3390/jmmp8050231
Chicago/Turabian StyleKorobov, Yury, Maksim Antonov, Vladimir Astafiev, Irina Brodova, Vladimir Kutaev, Svetlana Estemirova, Mikhail Devyatyarov, and Artem Okulov. 2024. "Erosion Wear Behavior of HVAF-Sprayed WC/Cr3C2-Based Cermet and Martensitic Stainless Steel Coatings on AlSi7Mg0.3 Alloy: A Comparative Study" Journal of Manufacturing and Materials Processing 8, no. 5: 231. https://doi.org/10.3390/jmmp8050231
APA StyleKorobov, Y., Antonov, M., Astafiev, V., Brodova, I., Kutaev, V., Estemirova, S., Devyatyarov, M., & Okulov, A. (2024). Erosion Wear Behavior of HVAF-Sprayed WC/Cr3C2-Based Cermet and Martensitic Stainless Steel Coatings on AlSi7Mg0.3 Alloy: A Comparative Study. Journal of Manufacturing and Materials Processing, 8(5), 231. https://doi.org/10.3390/jmmp8050231