Analytical Prediction of Multi-Phase Texture in Laser Powder Bed Fusion
Abstract
:1. Introduction
2. Methodology
2.1. Thermal Model
2.2. Single-Phase Texture Model
2.3. Multi-Phase Texture Model
3. Results and Discussion
3.1. Thermal Model
3.2. Single-Phase Texture Model
3.3. Multi-Phase Texture Model
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Correction Statement
Abbreviations
LPBF | Laser powder bed fusion |
CET | Columnar-to-equiaxed transition |
FEM | Finite element method |
AI | Artificial intelligence |
BCC | Body-centered cubic |
HCP | Hexagonal tightly packed |
P | Laser power |
T | Temperature |
Laser absorption coefficient | |
x, y, z | Coordinates |
V | Laser scanning velocity |
R | The distance between the source of heat and the analysis point |
K | Thermal conductivity |
, , | Coordinates of the heat source |
Thermal diffusivity | |
Room temperature | |
c | Heat capacity |
Density | |
Heat of conduction | |
Heat of convection | |
Heat of radiation | |
A | Each heat sink’s area on the surface of the melt pool |
Powder thermal conductivity | |
T | Temperature change |
h | Heat convection coefficient |
Radiation emissivity | |
Stefan-Boltzmann constant | |
Thermal gradient vector | |
Solidification rate | |
The angle formed by the growth and scanning directions | |
n | Exponent |
∅ | Certain value in Hunt’s model |
The exact texture vector of the seed crystal that yields the maximum value of | |
PX | Polycrystal base |
Number of possible seed crystals | |
Melting temperature | |
Bulk thermal conductivity | |
nn, kk | Columnar/equiaxed transition coefficient |
X, Y, Z | Coordinate axis |
GX, GY | The X and Y directions’ components of the thermal gradient vector |
Angle between the X and Y components of the thermal gradient |
References
- Zhu, S.; Yu, T.; Xu, T.; Chen, H.; Dustdar, S.; Gigan, S.; Gunduz, D.; Hossain, E.; Jin, Y.; Lin, F.; et al. Intelligent computing: The latest advances, challenges, and future. Intell. Comput. 2023, 2, 0006. [Google Scholar] [CrossRef]
- Newton, I. Philosophiæ Naturalis Principia Mathematica; Jussu Societatis Regiæ ac Typis Josephi Streater: London, UK, 1687. [Google Scholar]
- National Strategy for Advanced Manufacturing. National Strategy for Advanced Manufacturing; Technical Report; Office of Science and Technology Policy; National Strategy for Advanced Manufacturing: The White House, Washington, DC, USA, 2022.
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Merchant, A.; Batzner, S.; Schoenholz, S.S.; Aykol, M.; Cheon, G.; Cubuk, E.D. Scaling deep learning for materials discovery. Nature 2023, 624, 80–85. [Google Scholar] [CrossRef]
- Szymanski, N.J.; Rendy, B.; Fei, Y.; Kumar, R.E.; He, T.; Milsted, D.; McDermott, M.J.; Gallant, M.; Cubuk, E.D.; Merchant, A.; et al. An autonomous laboratory for the accelerated synthesis of novel materials. Nature 2023, 624, 86–91. [Google Scholar] [CrossRef]
- Schwab, K. The Fourth Industrial Revolution: What it Means, How to Respond; The World Economic Forum: Davos-Klosters, Switzerland, 2016; Available online: https://opendatawatch.com/past-events/mastering-the-fourth-industrial-revolution/ (accessed on 13 October 2024).
- Gibson, I.; Rosen, D.W.; Stucker, B.E.; Khorasani, M. Additive Manufacturing Technologies; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Wohlers, T.T.; Gornet, T.J.; Mostow, N.; Campbell, I.; Diegel, O.; Kowen, J.; Huff, R.; Stucker, B.E.; Fidan, I.; Doukas, A.; et al. History of Additive Manufacturing; SSRN Electronic Journal: Rochester, NY, USA, 2023. [Google Scholar] [CrossRef]
- Carr, T.; Chewning, E.; Doheny, M.; Madgavkar, A.; Padhi, A.; Tingley, A. Delivering the US Manufacturing Renaissance; Technical Report; McKinsey’s Operations Practice and the McKinsey Global Institute: New York, NY, USA, 2022. [Google Scholar]
- Conner, B.P.; Manogharan, G.P.; Martof, A.N.; Rodomsky, L.M.; Rodomsky, C.M.; Jordan, D.C.; Limperos, J.W. Making sense of 3-D printing: Creating a map of additive manufacturing products and services. Addit. Manuf. 2014, 1, 64–76. [Google Scholar] [CrossRef]
- Ngo, T.D.; Kashani, A.R.; Imbalzano, G.; Nguyen, K.T.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Yap, C.Y.; Chua, C.K.; Dong, Z.L.; Liu, Z.H.; Zhang, D.Q.; Loh, L.E.; Sing, S.L. Review of selective laser melting: Materials and applications. Appl. Phys. Rev. 2015, 2, 041101. [Google Scholar] [CrossRef]
- Vrancken, B.; Thijs, L.; Kruth, J.P.; van Humbeeck, J. Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties. J. Alloys Compd. 2012, 541, 177–185. [Google Scholar] [CrossRef]
- Dong Gu, D.; Shi, X.; Poprawe, R.; Bourell, D.L.; Setchi, R.; Zhu, J. Material-structure-performance integrated laser-metal additive manufacturing. Science 2021, 372, eabg1487. [Google Scholar]
- Hirsch, J.; Al-Samman, T. Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications. Acta Mater. 2013, 61, 818–843. [Google Scholar] [CrossRef]
- Margulies, L.; Winther, G.; Poulsen, H.F. In Situ Measurement of Grain Rotation During Deformation of Polycrystals. Science 2001, 291, 2392–2394. [Google Scholar] [CrossRef]
- Thijs, L.; Verhaeghe, F.; Craeghs, T.; Van Humbeeck, J.; Kruth, J.P. A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater. 2010, 58, 3303–3312. [Google Scholar] [CrossRef]
- Azizi, H.; Ebrahimi, A.; Ofori-Opoku, N.; Greenwood, M.; Provatas, N.; Mohammadi, M. Characterizing the microstructural effect of build direction during solidification of laser-powder bed fusion of Al-Si alloys in the dilute limit: A phase-field study. Acta Mater. 2021, 214, 116983. [Google Scholar] [CrossRef]
- Klemens, P. Heat balance and flow conditions for electron beam and laser welding. J. Appl. Phys. 1976, 47, 2165–2174. [Google Scholar] [CrossRef]
- Cline, H.; Anthony, T. Heat treating and melting material with a scanning laser or electron beam. J. Appl. Phys. 1977, 48, 3895–3900. [Google Scholar] [CrossRef]
- Goldak, J.; Chakravarti, A.; Bibby, M. A new finite element model for welding heat sources. Metall. Trans. B 1984, 15, 299–305. [Google Scholar] [CrossRef]
- Hunt, J.D. Steady state columnar and equiaxed growth of dendrites and eutectic. Mater. Sci. Eng. 1984, 65, 75–83. [Google Scholar] [CrossRef]
- Gäumann, M.; Henry, S.; Cléton, F.; Wagnière, J.D.; Kurz, W. Epitaxial laser metal forming: Analysis of microstructure formation. Mater. Sci. Eng. A 1999, 271, 232–241. [Google Scholar] [CrossRef]
- Gäumann, M.; Bezencon, C.; Canalis, P.; Kurz, W. Single-crystal laser deposition of superalloys: Processing–microstructure maps. Acta Mater. 2001, 49, 1051–1062. [Google Scholar] [CrossRef]
- Gockel, J.; Beuth, J. Understanding Ti-6Al-4V microstructure control in additive manufacturing via process maps. In Proceedings of the 2013 International Solid Freeform Fabrication Symposium, Austin, TX, USA, 12–14 August 2013; University of Texas at Austin: Austin, TX, USA, 2013. [Google Scholar]
- Basak, A.; Das, S. Epitaxy and microstructure evolution in metal additive manufacturing. Annu. Rev. Mater. Res. 2016, 46, 125–149. [Google Scholar] [CrossRef]
- Liu, J.; To, A.C. Quantitative texture prediction of epitaxial columnar grains in additive manufacturing using selective laser melting. Addit. Manuf. 2017, 16, 58–64. [Google Scholar] [CrossRef]
- Chadwick, A.F.; Voorhees, P.W. The development of grain structure during additive manufacturing. Acta Mater. 2021, 211, 116862. [Google Scholar] [CrossRef]
- Chadwick, A.F.; Voorhees, P.W. The Effects of Melt Pool Geometry and Scan Strategy on Microstructure Development During Additive Manufacturing. IOP Conf. Ser. Mater. Sci. Eng. 2023, 1274, 012010. [Google Scholar] [CrossRef]
- Elahi, S.M.; Tavakoli, R.; Boukellal, A.K.; Isensee, T.; Romero, I.; Tourret, D. Multiscale simulation of powder-bed fusion processing of metallic alloys. Comput. Mater. Sci. 2022, 209, 111383. [Google Scholar] [CrossRef]
- Zhang, J.; Chadwick, A.F.; Chopp, D.L.; Voorhees, P.W. Phase field modeling with large driving forces. npj Comput. Mater. 2023, 9, 1–9. [Google Scholar] [CrossRef]
- Huang, W.; Wang, W.; Ning, J.; Garmestani, H.; Liang, S.Y. Analytical Model of Quantitative Texture Prediction Considering Heat Transfer Based on Single-Phase Material in Laser Powder Bed Fusion. J. Manuf. Mater. Process. 2024, 8, 70. [Google Scholar] [CrossRef]
- Ning, J.; Mirkoohi, E.; Dong, Y.; Sievers, D.E.; Garmestani, H.; Liang, S.Y. Analytical modeling of 3D temperature distribution in selective laser melting of Ti-6Al-4V considering part boundary conditions. J. Manuf. Processes 2019, 44, 319–326. [Google Scholar] [CrossRef]
- Carslaw, H.S.; Jaeger, J.C. Conduction of Heat in Solids; Cambridge University Press: Cambridge, UK, 1952; Available online: https://api.semanticscholar.org/CorpusID:137616178 (accessed on 13 October 2024).
- Bunge, H.J. Texture Analysis in Materials Science: Mathematical Methods; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Kobryn, P.A.; Semiatin, S.L. Microstructure and texture evolution during solidification processing of Ti-6Al-4V. J. Mater. Process. Technol. 2003, 135, 330–339. [Google Scholar] [CrossRef]
- Welsch, G.; Boyer, R.; Collings, E. Materials Properties Handbook: Titanium Alloys; ASM International: Almere, The Netherlands, 1993. [Google Scholar]
- Takajo, S.; Tomida, T.; Caspi, E.N.; Pesach, A.; Tiferet, E.; Vogel, S.C. Property Improvement of Additively Manufactured Ti64 by Heat Treatment Characterized by In Situ High Temperature EBSD and Neutron Diffraction. Metals 2021, 11, 1661. [Google Scholar] [CrossRef]
- Simonelli, M.; Tse, Y.Y.; Tuck, C. On the Texture Formation of Selective Laser Melted Ti-6Al-4V. Metall. Mater. Trans. A 2014, 45, 2863–2872. [Google Scholar] [CrossRef]
- Al-Bermani, S.S.; Blackmore, M.; Zhang, W.; Todd, I. The Origin of Microstructural Diversity, Texture, and Mechanical Properties in Electron Beam Melted Ti-6Al-4V. Metall. Mater. Trans. A 2010, 41, 3422–3434. [Google Scholar] [CrossRef]
- Glavicic, M.G.; Kobryn, P.A.; Bieler, T.R.; Semiatin, S.L. An automated method to determine the orientation of the high-temperature beta phase from measured EBSD data for the low-temperature alpha-phase in Ti-6Al-4V. Mater. Sci. Eng.—Struct. Mater. Prop. Microstruct. Process. 2003, 351, 258–264. [Google Scholar] [CrossRef]
- Wang, S.; Aindow, M.; Starink, M.J. Effect of self-accommodation on α/α boundary populations in pure titanium. Acta Mater. 2003, 51, 2485–2503. [Google Scholar] [CrossRef]
- Shi, R.; Wang, Y. Variant selection during α precipitation in Ti-6Al-4V under the influence of local stress – A simulation study. Acta Mater. 2013, 61, 6006–6024. [Google Scholar] [CrossRef]
- Chen, W.; Boehlert, C.J. The elevated-temperature fatigue behavior of boron-modified Ti-6Al-4V (wt.%) castings. Mater. Sci. Eng.—Struct. Mater. Prop. Microstruct. Process. 2008, 494, 132–138. [Google Scholar] [CrossRef]
- Yang, Y.; Knol, M.F.; van Keulen, A.; Ayas, C. A semi-analytical thermal modelling approach for selective laser melting. Addit. Manuf. 2018, 21, 284–297. [Google Scholar] [CrossRef]
- Gusarov, A.V.; Yadroitsev, I.; Bertrand, P.; Smurov, I.Y. Model of Radiation and Heat Transfer in Laser-Powder Interaction Zone at Selective Laser Melting. J. Heat-Transf.-Trans. Asme 2009, 131, 072101. [Google Scholar] [CrossRef]
- Yadroitsev, I.; Yadroitsava, I. Evaluation of residual stress in stainless steel 316L and Ti6Al4V samples produced by selective laser melting. Virtual Phys. Prototyp. 2015, 10, 67–76. [Google Scholar] [CrossRef]
- Fu, C.H.; Guo, Y.B. Three-Dimensional Temperature Gradient Mechanism in Selective Laser Melting of Ti-6Al-4V. J. Manuf. Sci. -Eng.-Trans. Asme 2014, 136, 061004. [Google Scholar] [CrossRef]
- Simonelli, M.; Tse, Y.Y.; Tuck, C.J. Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V. Mater. Sci. Eng.—Struct. Mater. Prop. Microstruct. Process. 2014, 616, 1–11. [Google Scholar] [CrossRef]
- Muiruri, A.M.; Maringa, M.; du Preez, W.B. Crystallographic Texture Analysis of As-Built and Heat-Treated Ti6Al4V (ELI) Produced by Direct Metal Laser Sintering. Crystals 2020, 10, 699. [Google Scholar] [CrossRef]
- Hadadzadeh, A.; Hadadzadeh, A.; Amirkhiz, B.S.; Li, J.Y.; Mohammadi, M. Columnar to equiaxed transition during direct metal laser sintering of AlSi10Mg alloy: Effect of building direction. Addit. Manuf. 2018, 23, 121–131. [Google Scholar] [CrossRef]
Properties of Material | Value | Unit |
---|---|---|
Surrounding Temperature () | 20 | °C |
Melting Temperature () | 1655 | °C |
Density () | 4428 | kg/m3 |
Bulk Thermal Conductivity () | 5–35 | W/(mK) |
Powder Thermal Conductivity () | 0.21 | W/(mK) |
Heat Capacity (C) | 500–800 | J/(KgK) |
Heat Convection Coefficient (h) | 24 | W/(m2K) |
Radiation Emissivity () | 0.9 | 1 |
Stefan-Boltzmann Constant () | W/(m2K) | |
CET (nn) | 3.2 | 1 |
CET (kk) | 1 |
Construct Parameters | Value |
---|---|
Layers | 10 |
Seeds | 100 |
Sections | 1000 |
Grains | 20 |
Track | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, W.; Standish, M.; Wang, W.; Ning, J.; Cai, L.; Gao, R.; Garmestani, H.; Liang, S.Y. Analytical Prediction of Multi-Phase Texture in Laser Powder Bed Fusion. J. Manuf. Mater. Process. 2024, 8, 234. https://doi.org/10.3390/jmmp8050234
Huang W, Standish M, Wang W, Ning J, Cai L, Gao R, Garmestani H, Liang SY. Analytical Prediction of Multi-Phase Texture in Laser Powder Bed Fusion. Journal of Manufacturing and Materials Processing. 2024; 8(5):234. https://doi.org/10.3390/jmmp8050234
Chicago/Turabian StyleHuang, Wei, Mike Standish, Wenjia Wang, Jinqiang Ning, Linger Cai, Ruoqi Gao, Hamid Garmestani, and Steven Y. Liang. 2024. "Analytical Prediction of Multi-Phase Texture in Laser Powder Bed Fusion" Journal of Manufacturing and Materials Processing 8, no. 5: 234. https://doi.org/10.3390/jmmp8050234
APA StyleHuang, W., Standish, M., Wang, W., Ning, J., Cai, L., Gao, R., Garmestani, H., & Liang, S. Y. (2024). Analytical Prediction of Multi-Phase Texture in Laser Powder Bed Fusion. Journal of Manufacturing and Materials Processing, 8(5), 234. https://doi.org/10.3390/jmmp8050234